
BaseBridge: Bridging the Gap between Over-The-Air and Emulation Testing for
Cellular Baseband Firmware

Daniel Klischies∗, Dyon Goos†, David Hirsch∗, Alyssa Milburn‡, Marius Muench§ and Veelasha Moonsamy∗
∗Ruhr University Bochum, †Vrije Universiteit Amsterdam, ‡Independent, §University of Birmingham

firstname.lastname@rub.de, d.w.goos@vu.nl, amilburn@zall.org, m.muench@bham.ac.uk

Abstract—Current approaches for emulating cellular base-
bands inherently fall short in comparison to over-the-air testing
due to their limited support for the complex peripherals
involved in a modern baseband, such as DSPs, SIM cards
and RF frontends. Improving such support is a daunting
task, requiring deep reverse-engineering which is extremely
time consuming – resulting in slow progress. Consequently,
techniques such as fuzzing are only able to find relatively
shallow bugs, since they are unable to reach the states required
for the majority of the baseband to function.

To fill this gap, we propose BASEBRIDGE, which enables
far more comprehensive simulation of baseband behavior by
restoring relevant state from memory dumps of real devices.
Our prototype implementation supports baseband firmware
from two major vendors (MediaTek and Samsung), and –
in contrast to current state-of-the-art emulators – correctly
responds to 97% of tested RRC and NAS messages while
improving coverage by an average factor of 2.41 (Samsung)
and 5.54 (MediaTek). BASEBRIDGE also passes several LTE
conformance tests. Our empirical evaluation demonstrates that
this enhanced fidelity enables faster discovery of a wider range
of bugs thanks to the scalability of emulation; our fuzzing
campaign shows that coverage improves by a factor of 2.3–5x
overall, and by a factor of 9.0–22.5x for functionality targeted
by our approach. BASEBRIDGE unveiled 5 new vulnerabilities,
which we have disclosed to affected vendors.

1. Introduction

Basebands, dedicated processors in smartphones’
chipsets, are essential components that establish connectivity
to cellular networks. The firmware running on baseband
processors has become an increasingly lucrative target for
threat actors [38], which in turn, has led to more active
research on the identification of vulnerabilities in baseband
firmware in recent years. Researchers have proposed
fuzzers [13], [24], approaches to validate the correct
implementation of cellular network protocol specifications
[7], [23], and systematic evaluation of basebands’ handling
of various protocol violations [25], [34]. Most of these
approaches work “Over-the-air (OTA)”, that is, they test
physical User Equipment (UE) by supplying the test signals
using a small-scale cellular network. This requires a test
base station, usually using a Software Defined Radio (SDR)

and open source implementations of a cellular base station
and core network. This has two advantages: First, OTA
testing offers a high accuracy, as vulnerabilities found in
the lab environment will apply in real-world scenarios as
well – given that the environment is a scaled down, but
otherwise mostly identical replication of the real world.
Second, OTA testing enables the assessment of a broad
range of complex functionalities supported by the baseband.

However, OTA testing also has several inherent down-
sides. To scale OTA testing horizontally, additional UEs
and SDRs must be acquired, posing a significant financial
challenge. Furthermore, OTA testing setups offer limited
introspection into the behavior of the baseband firmware.
Without the tools available only to the baseband and UE
manufacturers, external researchers often cannot distinguish
between, e. g., whether a crash is caused by a denial of
service or remote code execution vulnerability. Lastly, OTA
testing is relatively slow. Recent state of the art approaches
require 2 to 10 seconds to test a baseband’s behavior on a
single packet [34], [40]. In particular, experiments that rely
on testing large number of packets – such as fuzzing – are
severely hampered by this limitation of OTA testing.

Several recent works address the aforementioned limi-
tations of OTA testing by executing the baseband firmware
in an emulator, rather than on a physical device [17], [32].
These emulators can be run on commodity Linux servers,
enabling horizontal scaling by launching multiple emulators
in parallel. They further improve performance by a factor of
100 to 10000 compared to OTA testing, as they can take and
restore snapshots of the emulated baseband’s state. Lastly,
emulators enable dynamic analysis, allowing researchers to
place arbitrary breakpoints and introspect the baseband’s
memory and registers at any point during execution.

However, existing emulation approaches fall short in sce-
narios where OTA approaches excel. In particular, existing
emulation approaches are typically only able to compre-
hensively simulate the baseband’s behavior during parsing
of incoming packets, and frequently stop execution shortly
after. This limitation is illustrated by the fact that none of
the existing emulation approaches are able to generate a
response to any Downlink (DL) packet on two essential pro-
tocol layers of the 4G specification, Radio Resource Control
(RRC) and Non-Access Stratum (NAS). Current emulation
approaches therefore enable limited, but not broad, security
evaluation of baseband firmware. We theorize that this is



due to the enormous amount of state that a baseband must
take into account when processing incoming packets.

In general, basebands can only process a packet if the
baseband is connected to a cellular network. Depending on
the packet, processing may require that the baseband and the
cellular network have previously successfully negotiated an
encryption algorithm for the connection or that the cellu-
lar network is located in a certain country. Likewise, the
baseband may require state that is derived from peripheral
devices, such as the Subscriber Identity Module (SIM) card’s
International Mobile Subscriber Identity (IMSI), or signal
strength measurements conducted by the Radio Frequency
(RF) frontend. As existing emulators neither emulate the
cellular network, nor complex peripherals such as SIM cards
or RF frontends, the emulated firmware lacks all of this state.
Instead, it behaves like it is not connected to a network, does
not contain a SIM card, and does not have the required pe-
ripherals to perform any RF signal measurements. Building
this state inside an emulator would require emulating these
complex peripherals, and simulating the entire behavior
of a cellular network, down to the RF signal level. As
commercial basebands are entirely closed source, this not
only requires huge reverse-engineering efforts, but also must
be implemented separately for each baseband manufacturer,
and potentially even for each baseband model.

To close the gap between OTA and emulated baseband
security testing, we propose BASEBRIDGE, to enable broad
and accurate emulation with faster, scalable introspection
capabilities. BASEBRIDGE is generic and therefore portable
between various baseband manufacturers and models, and
requires no manual reverse-engineering to implement the
behavior of additional complex peripherals. The novelty of
BASEBRIDGE lies in its ability to transfer state of a physical
device that is already connected to a cellular network, and
continue the emulation from this state. We show that our
implementation of BASEBRIDGE can process 97% of tested
RRC and NAS messages in a way that matches the response
of a physical baseband in an OTA scenario. Furthermore,
we demonstrate that BASEBRIDGE is the first baseband
emulation approach that successfully passes several cellular
protocol conformance tests that are normally used to qualify
physical basebands for mass production, further illustrating
its accuracy in replicating the behavior of a physical base-
band. We further evaluate BASEBRIDGE by fuzzing base-
band firmware of two major baseband manufacturers, i.e.,
MediaTek and Samsung, improving coverage by as much as
9.0–22.5x in targeted cases. These improvements uncover
5 new and 3 previously known vulnerabilities, including
several remote code execution vulnerabilities, enabling an
attacker to take over full control of affected basebands over-
the-air.
In summary, we make the following contributions:

• We propose BASEBRIDGE, an approach to transfer
state from physical devices, allowing researchers to
leverage the advantages of emulation-based base-
band firmware testing, while exploring functionality
that requires state only available in OTA testing.

• We demonstrate BASEBRIDGE’s real-world appli-
cability by implementing a prototype, supporting
basebands from two major vendors, based on an
existing state-of-the-art baseband emulator.

• We evaluate BASEBRIDGE both qualitatively,
demonstrating that it reproduces the behavior of
physical basebands accurately, and quantitatively via
fuzzing, uncovering a total of 8 vulnerabilities.

The source code to BASEBRIDGE along with supporting
artifacts will be made publicly available at https://github.
com/FirmWire/BaseBridge.
Coordinated Disclosure: All vulnerabilities presented in
this paper have been disclosed to, and confirmed by, affected
manufacturers. Patches are currently being developed and
deployed to end-users.

2. Background

2.1. Cellular Protocol Stacks

UE Basestation Core network
Physical

MAC

RLC

PDCP

RRC

NAS

Layer 1

Layer 2

Layer 3

Layer 4

Figure 1. Overview of the LTE DCCH protocol stack.

Cellular networks consist of both, a network side, i.e.,
the Base Tranceiver Station (BTS), sometimes also referred
to as BTS or Evolved Node B (ENB), connected to a
core network, as well as consumer devices, so called UEs.
Most UEs contain a baseband for handling the cellular
communication. To maintain interoperability all over the
world and between different vendors, cellular networks rely
on common protocols. The cellular protocols are composed
of several layers that together make up the celullar protocol
stack. Various cellular protocol stacks are specified, ranging
from the legacy Global System for Mobile (GSM) to the
latest 5G standards. At the time of writing, Long Term
Evolution (LTE) is the most prevalent of these [16].

LTE is divided into multiple channels, depending on
whether the packets carried by the channel are logically
unicasted or broadcasted. The LTE unicast channel, im-
plementing most of the security relevant functionality, is
the Dedicated Control Channel (DCCH) channel. The LTE
DCCH protocol stack consists of NAS and RRC, sev-
eral Layer 2 protocols (Packet Data Convergence Protocol
(PDCP), Radio Link Control (RLC), Medium Access Con-
trol (MAC)) and a Physical Layer, as shown in Figure 1.

https://github.com/FirmWire/BaseBridge
https://github.com/FirmWire/BaseBridge


Unlike protocols from stacks such as TCP/IP, the individual
layers rely on the presence of both lower and upper layers
and are highly interconnected: e. g., every protocol below
RRC is configured by RRC, and yet NAS messages are
transported via RRC.

2.2. Modem firmware

The firmware for baseband modems is built using a
Real-Time Operating System (RTOS). Such firmware [17],
[23], [32] typically consists of the core RTOS, drivers,
and cellular specific code. The majority of functionality
is implemented as a large number of tasks. Some tasks
implement OS functionality, while others contain cellular-
specific functions, and communicate via message passing.
The latter often implement specific pieces of the different
layers within the cellular stack, and inherently work closely
with many other tasks. For example, a Layer 3 RRC task
may communicate with both Layer 2 and Layer 1 tasks.
However, these tasks are not isolated from each other,
neither technically nor even by design; protocol state is
expected to be consistent between tasks, and actual state
is often shared between them. Firmware state can also be
stored in many forms and locations, including:
Stacks: Stacks for each task, as well as potential stacks

used by the RTOS kernel.
Global variables: Used for storing data belonging to in-

dividual tasks and global data for the kernel, such as
information about the currently running task.

Heaps & Arenas: Dynamically allocated by tasks/kernel.
Registers: Baseband processor registers, e.g. the program

counter, stack pointer and general purpose registers.
Peripherals: Configuration and state of peripherals con-

nected to the baseband, which typically use MMIO,
interrupts, and DMA to interact with the baseband.

Reverse-engineering even small portions of such
firmware is challenging due to the sheer size of the firmware,
the highly complex and interconnected tasks, the large
amount of state of different types, and the wide range of
devices with different firmware versions which are built and
configured in different ways.

3. Motivation

We motivate our work with an explanatory case study to
provide insights into the implementation of a Commercial-
off-the-shelf (COTS) baseband and derive concrete chal-
lenges which our solution must overcome. Specifically, we
discuss how a MediaTek baseband firmware responds to a
Counter Check message and how state affects its processing.

RRC Counter Check mechanism. The purpose of a RRC
Counter Check message is to verify the amount of data
transmitted on each data channel. Although the Counter
Check itself is a RRC message, the respective counter is kept
by the PDCP layer, already highlighting the interconnection
between different layers in the cellular protocol stack.

1 rrc_conn_state_struct* conn_state = 0x63b3d3f4;
2 state_machine_struct[] state_machines = 0x629e4474;
3

4 void errc_conn_main(void *msg_ptr) {
5 /* ... */
6 int i = 0, state_id = conn_state->current_state;
7

8 for (i; state_machines[i]->msg_id != -1; i++) {
9 if (state_machines[i]->msg_id != msg_id) continue;

10 int current_proc = state_machines[i][state_id];
11 do {
12 switch(current_proc) {
13 case 1:
14 errc_conn_est_main(msg_ptr, &state_id,
15 &current_proc);
16 break;
17 case 2:
18 errc_conn_smc_main(msg_ptr,&state_id,
19 &current_proc);
20 break;
21 /* ... */
22 case 11:
23 errc_conn_lwa_main(msg_ptr, &state_id,
24 &current_proc);
25 break;
26 default:
27 trap(13);
28 }
29 /* ... */
30 conn_state->current_state = state_id;
31 } while (current_proc != 0);
32 return;
33 }
34 }

Listing 1. Example of internal state usage (simplified and adapted from
errc_conn_main).

To process a RRC counter check message, the UE
requires at least an initial connection (i.e., it is in the
RRC_CONNECTED state). Moreover, ciphering and integrity
protection of the RRC connection must have been activated.
Although the security is configured using the RRC’s Se-
curity Mode Command, ciphering and integrity protection
itself is handled within the PDCP layer [4]. The ability of
an (emulated) UE to correctly process a Counter Check
message depends on all these different layers being in a
consistent and appropriate state, which current emulation-
based approaches do not support.

Parsing the Counter Check in the baseband. Upon receiv-
ing an incoming Counter Check message, it is forwarded
from the PDCP task to the RRC task1. The message is
decoded and a new internal message, depending on the type
of the received message, is passed to the RRC task. The
RRC task performs several checks; for example, it checks
whether the UE is in a RRC_CONNECTED state, as described
before. If any check fails, the message is discarded.

In the MediaTek baseband firmware we chose for this
example, further processing of the message is controlled by
a function implementing a finite state machine, as shown in
Listing 1. This relies on two global variables: a struct which
stores a variety of state data (Line 1), and an array of structs
(Line 2) containing the state machine’s definition. The state
machine needs to handle incoming messages differently

1. MediaTek uses e (presumably evolved) as a prefix for the LTE
tasks and functions, i. e., the RRC task is called ERRC.



depending on the current state of the baseband. To correctly
handle a RRC Counter Check message, the baseband will
need to reach the errc_conn_smc_main function (L18),
which only occurs if current_proc is equal to 2. In
other states, the message would not be processed further,
but would be silently discarded or even rejected.

To know which combination of rrc_conn_state
and state_machine_struct would allow for reaching
this procedure during execution, an analyst would have to
overcome several challenges, which we elaborate on below.

Size of baseband firmware. Through static analysis, we
find that the state data structure (Line 1) has a (minimum)
length of 1546 bytes and 1153 references. The high number
of references shows that this memory is shared between
several functions. Although the high-level state is only a
single field of this structure, certain conditions require other
fields to be checked or updated2. If the relevant path through
the firmware is not known beforehand, the high number
of similar looking code paths – some dependent on the
state – make manual reverse-engineering infeasible at scale.
This illustrates our first challenge: the sheer amount of data
structures and code blocks in baseband firmware.

In our example, the outer loop (L8–L9) retrieves the
state machine definition corresponding to the current mes-
sage. The definition contains fields for every possible state,
including which function should be executed next (L10).
The inner loop executes the selected function, which is
repeated until the end of execution is signaled (L11–L31).
The callees can change the value of state_id to influence
the processing of further messages, as well as the value of
current_proc which causes a different function to be
called in the next iteration of the inner loop (L14, L18,
L23). Again, if the state or message does not match the
state machine definitions, the message is either discarded or
a trap is executed (L27, L32).

Interdependency and complexity of baseband firmware.
Furthermore, complex interdependencies between variables
make it infeasible to restore the state by setting a few
variables to manually reverse-engineered constant values.
Moreover, the correct values are usually not visible via static
analysis and without BASEBRIDGE, no means for dynamic
analysis exist. Other solutions require manual modeling of
the required state which itself mandates a deep understand-
ing of the firmware. Finally, recovering data structures is an
unresolved challenge in binary analysis and we have shown
that understanding the baseband firmware’s data structure is
essential for its functionality. This high level of interdepen-
dency and complexity marks our second challenge.

In our example, the callee is responsible for the actual
handling of the message. It first checks whether security is
activated for the connection. If not, the message is discarded,
as described in Section 2.1. Execution is then passed to
the PDCP task to query the counter values. This might
require the PDCP task to pass execution to a peripheral,

2. For the sake of readability, this is not shown in Listing 1.

a coprocessor dedicated to Layer 2 tasks. Finally, execution
is passed back to the RRC task and the Counter Check
Response message is created, encoded, and passed on to
the PDCP task for transmission.

Non-Scalability of Manual Analysis. Lastly, while we have
manually reverse-engineered this particular example for the
MediaTek firmware, other vendors and parts of the stack
could (and would) implement similar functionality differ-
ently. This brings us to our third challenge: These efforts
must be repeated for every vendor or even multiple times
for the same vendor, e. g., for distinct baseband models,
highlighting scalability shortcomings in existing solutions.

4. BASEBRIDGE

The novelty of our proposed approach, BASEBRIDGE, is
that we can reach a desired state on a physical baseband dur-
ing normal operation, and then transfer that state into an em-
ulator which is capable of running the baseband’s firmware
– even when the emulator cannot reach the aforementioned
baseband’s state, possibly due to missing peripherals.

BASEBRIDGE is comprised of two concrete high-level
components, as shown in Figure 2. (1) First, it obtains
the contents of the baseband processor’s memory from
a real phone after the baseband has already reached the
desired state. (2) Second, as the memory dumps cannot
be restored directly, BASEBRIDGE implements a Dynamic
Memory Restoring algorithm to identify and restore the nec-
essary portions of memory into the emulated memory state.
Ultimately, this allows to observe the baseband’s behavior in
the presence of state and provides a faithful approximation
of the physical baseband used to extract the memory dump.

4.1. Extracting State from Physical Devices

To enable stateful emulation of the baseband, we need
to obtain the firmware and the state of the baseband from a
COTS UE. To fully transfer the complete state listed in Sub-
section 2.2, all of these aspects would have to be extracted
from a physical UE and restored into the emulator. This
is inherently challenging; for example, extracting peripheral
state (such as storage devices or the RF frontend) without
manual per-peripheral effort is likely to be impractical.

However, a key insight is that it is neither required
nor necessarily desirable for BASEBRIDGE to obtain all
of the low-level state; we only need to restore portions
which are (or might be) relevant to the connection state.
Global variables and heap memory are used by tasks to
store information such as what network they are connected
to, the current phase of connection establishment or whether
authentication is enabled (the connection state), and so these
regions may be relevant. In contrast, the contents of the
stack and the program registers only reflect the progress in
processing the current message, and hence do not contain
any persistent state. Finally, we note that global variables
used by the kernel itself are used to store information on
the state of the RTOS, and not the connection state.



Dump
1. Connect  

physical UE to 
network

2. Extract state
into Dump file

1. Initialize 
baseband

Extracting State (§4.1) Dynamic Memory Restoring (§4.2)

2. Apply Restore list, send 
packet & generate Trace file

3. Filter4. Identify chunks

Trace file

Dump

5. Group chunks6. Evaluate groups7. Update & iterate 

Restore list

DL Packet

Figure 2. Overview of BASEBRIDGE.

As such, BASEBRIDGE can rely on the emulated
firmware’s state after boot for much of the baseband state,
including kernel global variables, stack memory, and pe-
ripheral state. We require only a memory dump containing
global and heap memory contents. We propose three con-
crete approaches which can be used by BASEBRIDGE to
obtain such a dump from a physical baseband:

(i) Manufacturer tooling. Memory can be read during
execution using debugging tools specific to the baseband’s
manufacturer. However, access to such tools is typically ex-
clusive to smartphone manufacturers and protected by Non-
Disclosure Agreements (NDAs). While it may be possible to
reverse-engineer the relevant debug APIs, such open-source
tooling currently only exists for Qualcomm basebands, and
it is unable to dump processor register contents [33].

(ii) Leveraging vulnerabilties to inject a debugger.
A debugger can be injected by exploiting (pre-existing)
issues, for instance OTA Remote Code Execution (RCE)
vulnerabilities or flaws in the baseband firmware update
process. This approach has two disadvantages: First, it re-
quires a vulnerability. We expect baseband manufacturers
to fix such vulnerabilities quickly following coordinated
disclosure, preventing analysis of future firmware versions.
Second, it is likely to be difficult to preserve baseband
stack and register contents, since the debugger runs on the
baseband itself and thus affects its run-time state.

(iii) Crash dumps. A method that is widely-supported
across different baseband models and manufacturers is lever-
aging the baseband’s built-in crash dump functionality. This
dumps memory contents to non-volatile memory during
baseband crashes, caused by e. g., invalid memory accesses
or violated assertions. Some smartphone manufacturers, like
Samsung, even provide debug menu options to trigger the
generation of such dumps. However, their generation re-
quires raising an interrupt, overwriting stack contents, and
resulting dumps typically do not contain register contents.
Observation: Several practical methods allow to extract

main memory contents from a commercial baseband, all of
which include the global variables and heap memory, thus
providing sufficient information about the connection state.
Register contents, peripheral state, and precise stack dumps,
on the other hand, are unrealistic to obtain in most scenarios.
Thus, BASEBRIDGE must be able to work with the resulting
imprecise memory dumps.

4.2. Dynamic Memory Restoring

Due to imprecise memory dumps, related to the observa-
tions made in the previous paragraph, BASEBRIDGE cannot
load the memory dump as a whole into the emulator, as
doing so would cause the emulator to crash early before
processing any packets. Therefore, BASEBRIDGE should
(ideally) only restore portions of the memory which are
relevant to the connection state inside the emulator. To do
this, we need a tractable approach for identifying memory
regions relevant to the connection state, that can scale up to
the complexity and interdependency of baseband firmware.

Unfortunately, identifying relevant memory using static
analysis alone would require a prohibitive amount of manual
effort and is likely to yield a high number of false positives,
as global variables and dynamically allocated structures are
commonly interleaved with other data (e.g., RTOS state).

Therefore, BASEBRIDGE instead identifies the memory
regions that contain the relevant connection state dynam-
ically and attempts to restore the connection state in the
emulator iteratively from the imprecise memory dump.

At a high level, we inject OTA packets into the emulator
and log which regions (‘chunks’) of memory are accessed
during execution alongside metadata for each access. We
use the access data to create a restore list to selectively
restore relevant memory from an imprecise memory dump.
To create a restore list for a given baseband firmware, we
develop a general algorithm for Dynamic Memory Restor-
ing that can be combined with vendor specific heuristics.



This allows BASEBRIDGE to efficiently handle the subtle
differences in the baseband RTOS design.

Our approach starts with an empty restore list and
iteratively determines which chunks are relevant for the
connection state. For this, our Dynamic Memory Restoring
algorithm executes the following steps:

(i) Core initialization. We begin by executing the firmware
under test in an emulator up to the point where it would be
ready to receive incoming OTA packets from a basestation.
This provides basic initialization for the baseband’s RTOS
and its tasks, but leaves all connection state uninitialized.

To speed up Dynamic Memory Restoring, we take a
snapshot of the emulated baseband at this time, which will
serve as a basis for all other steps.

Running example: Recall the example from Listing 1.
After core initialization, the RRC task would be ready
to process incoming messages, but all state variables
are likely to be uninitialized or in a disconnected state,
reflecting a fresh boot of the baseband.

(ii) Trace generation. We restore the snapshot and select
a DL packet for injection into the baseband. Immediately
before the first injected packet is processed, we restore all
the chunks in the restore list from a physical baseband’s
memory dump; note that this list is initially empty.

Then, we begin execution and log the addresses of all
memory accesses (reads and writes) in a trace file, along
with the program counter and the return address at the
time of access. We stop the emulation either if the emu-
lated firmware encounters a crash (e.g., due to accessing
unmapped memory or hitting an assertion) or finishes pro-
cessing the injected packet and returns to the main loop.
During execution, we also monitor for Uplink (UL) response
packets, which would be sent from the UE to the basestation.

Running example: We inject a RRC packet into the
baseband which triggers an internal Counter Check
message. BASEBRIDGE logs the accesses to the
current state field of conn state on line 6 and to the

various offsets of state machines on line 10.

(iii) Filtering. Where applicable, vendor-specific heuristics
can now be applied to create a filtered trace file and speed
up Dynamic Memory Restoring. The input to the filtering
process is the trace file, a list of memory regions or chunks
to be excluded, and (optionally) the memory dump from the
physical phone. Example heuristics include:

• Exclusion of task code and stack regions.
• Exclusion of regions known ahead of time to contain

only kernel memory or other irrelevant data.
• Exclusion of memory which is overwritten without

being read, as this cannot be relevant state.
• Exclusion of regions which are not included in the

memory dump as these cannot be restored (e.g.,
regions corresponding to peripherals).

Running example: We know ahead of time that the
code of Listing 1 is static and will never change,
regardless the processed messages or connection state.
Thus, we filter the memory regions holding the code
from the trace file.

(iv) Identification of memory chunks. Where sufficient
heuristics are either unavailable or insufficient, BASE-
BRIDGE continues its analysis by traversing the filtered
trace file to identify continuous memory chunks. A memory
chunk is a range of consecutive memory addresses that have
been accessed in the same way (i.e., read or write access),
during the current emulation run. Intuitively, in many cases
a memory chunk will correspond to a structure or an array.

We expect that structures and arrays will never store
connection state and kernel state at the same time. Thus, in
Step 2, chunks will either be entirely restored or not at all.

Running example: If during execution another
function accesses a field that is adjacent to the
current state field of the conn state structure, the

addresses of both fields will be merged into a single
memory chunk.

(v) Grouping of memory chunks. At this stage, the
simplest approach to identify connection state would be
to re-run the emulator with every possible combination of
restored memory chunks. For every combination, BASE-
BRIDGE could check whether the emulation produces the
expected response. However, typical trace files contain sev-
eral thousand accessed chunks and the resulting combina-
torial explosion makes this approach impractical. Instead,
we reduce the number of test cases by identifying groups of
chunks that likely need to be restored together, by determin-
ing which chunks are accessed within the same functions.

For each memory chunk, we use the filtered trace file
generated in the previous step to determine the list of
functions which either (a) directly access that chunk or
(b) call a function accessing that chunk. We then create
a group containing both the memory chunk as well as all
other memory chunks that are (directly) accessed by those
functions. This results in a set of groups which approximate
the dependencies between the memory chunks as expressed
by the functions using them.

Running example: We see that errc conn main ac-
cesses both the conn state−>current state variable
and the state machines array. Thus, we add the mem-
ory chunks for both conn state−>current state and
state machines to the same group.

(vi) Per-group evaluation. Now, BASEBRIDGE has several
candidate groups available for restoring and each group
consists of multiple memory chunks that are semantically
connected with each other. However, we still need to deter-
mine whether a group represents memory chunks containing
connection state, and thus should be added to our restore list.



For each group of memory chunks, we restart the em-
ulator from the snapshot with the memory chunks of that
group added to the restore list (which is empty during the
first iteration of Dynamic Memory Restoring). We measure
how many unique basic blocks are accessed and store all
log messages written by the emulated baseband. After the
packet has been processed (or emulation aborted), we restart
the emulator, reset the restore list and repeat this process for
the next group, continuing until all groups have been tested.

To assess which groups of memory chunks are the most
promising to restore, we use feedback collected from the
emulator as a measure of success; groups with relevant state
will enable the emulator to proceed further with processing
packets. To identify the most promising groups, we use the
following metrics: (a) execution of new basic blocks, (b)
addition of new log messages, and (c), prevention of crashes.

Whenever a group fulfills at least one of these criteria,
and has not lead to a significant decrease of coverage, i. e.,
has not disabled previously working functionality, we add
the group to our baseline restore list so that this memory
will always be restored in future executions of the emulator.

Running example: Restoring state machines and
conn state−>current state will likely allow emulation
to proceed into one of the functions inside the switch-
case statement, executing new basic blocks and poten-
tially avoiding the trap in the default case (l. 27).

(vii) Iteration. After per-group evaluation, we perform the
next iteration starting from Step 2 with the new restore list.
Steps 2–7 are repeated until we reach a fixed point where
no new memory accesses are found and Dynamic Memory
Restoring has produced a final restore list.

5. Implementation

To demonstrate the feasibility of our approach, we
implement a prototype of BASEBRIDGE on top of the
FIRMWIRE platform. It provides support for full-system
emulation of Samsung and MediaTek basebands [17] and we
likewise implement BASEBRIDGE for baseband firmware
of both vendors. Our BASEBRIDGE prototype consists of
approximately 2250 lines of Python including the core algo-
rithm, orchestration features, and additions to FIRMWIRE’s
vendor plugins. In the following, we detail noteworthy im-
plementation details and performance optimizations.

5.1. Implementation Details

Creating and parsing crash dumps. For both MediaTek
and Samsung, we rely on manually creating crash dumps
via the according vendor-specific debug menu. However,
these crash dumps use proprietary formats, so additional pre-
processing is required for mapping memory contents of a
crash dump to the memory layout of the emulated baseband.

For MediaTek, we manually reverse-engineered the
crash dump format to establish this mapping. We take a

simpler approach for Samsung crash dumps: we search the
crash dump file for known patterns from the emulation state,
and use these to determine the correct mapping.

Emulating downlink and uplink messages. BASEBRIDGE
extends FIRMWIRE to include support for supplying DL
messages and observing UL messages using the GSM-
TAP format, which enables both dynamic communication
as well as use of the well-established pcap format. This
is used to provide appropriate packets during the initial
trace generation, and can also be used during later dynamic
analysis. This allows for two-way communication between
the emulated UE and a mocked up base station, and allows
us to observe the network traffic via WIRESHARK.

Generating trace files. FIRMWIRE’s core is based
on Platform for Architecture-Neutral Dynamic Analysis
(PANDA) [9]. As such, the framework exposes a rich API
for run-time hooks and on-the-fly coverage generation. We
leverage PANDA to install memory hooks to track memory
read and write accesses. This allows us to create trace files
and enrich the memory access information with metadata
such as current program counter value or return address.

5.2. Performance Optimizations

Parallelization. Various steps of Dynamic Memory Restor-
ing can benefit from parallelization, as the individual steps
do not necessarily need to execute their tasks sequentially. In
particular, per-group evaluation (Step 6) requires executing
the emulator a significant amount of times under different
configurations of restored groups. We parallelized this step
and allow a user-defined amount of emulation instances to
run at the same time to speed up this process.

TABLE 1. IMPLEMENTED HEURISTICS BY VENDOR.

ID Excluded memory objects MediaTek Samsung

H1 Memory outside of memory dump ✓ ✓
H2 RTOS & tasks’ code ✓ ✓
H3 Tasks’ stacks ✓
H4 Irrelevant heap data ✓
H5 Memory written to before first read ✓
H6 Global message queue data ✓
H7 Global event data ✓
H8 Global timer data ✓

Vendor-Specific Heuristics. A core optimization of BASE-
BRIDGE is the option to apply heuristics to exclude memory
chunks from the restore candidates. We list the heuristics we
implemented and the vendors we applied them to in Table 1.

We utilize a wider variety of heuristics for Samsung
baseband firmware due to the structure of the underlying
RTOS. In ShannonOS (Samsung’s proprietary RTOS) some
task state is typically well separated from connection state,
which allows the creation of simple yet effective and scal-
able heuristics through FIRMWIRE’s PatternDB system.

We extended BASEBRIDGE’s Samsung vendor plugin
with a scalable heap parser capable of identifying the heap



metadata and the allocated heap regions from the crash
dump. With this knowledge, we expand the Dynamic Mem-
ory Restoring algorithm to ensure that new heap allocations
are placed in a new region of memory, avoiding conflicts.

6. Evaluation

To evaluate BASEBRIDGE, we first want to analyze
improvements in terms of emulation accuracy. For this, we
replay DL messages and compare the UL responses between
BASEBRIDGE, plain FIRMWIRE as well as a physical UE
(Subsection 6.1). To understand the gains from improved
accuracy to fuzz testing, we evaluate BASEBRIDGE’s perfor-
mance during multiple fuzzing campaigns (Subsection 6.2).
Finally, to demonstrate that BASEBRIDGE enables scalable
and stateful security testing of emulated UEs, we showcase
and discuss discovered vulnerabilities (Subsection 6.3).

Experimental setup. We focus our experiments on parts
of the LTE implementations. For this, we extended the
existing MediaTek RRC FIRMWIRE modkit task and created
a FIRMWIRE modkit task for Samsung from scratch. These
tasks allow to both inject RRC and NAS messages sent over
the DCCH, Broadcast Control Channel (BCCH), Common
Control Channel (CCCH) and Multicast Control Channel
(MCCH) LTE channels. In contrast to plain FIRMWIRE,
we did not need to manually reverse-engineer and hardcode
state-related addresses, greatly reducing the required effort.

As targets for our evaluation, we select sample firmwares
for the MediaTek MT6768 baseband and Samsung Exynos
9820 basebands3. We create a crash dump from a physical
Samsung Galaxy A41 and S10e connected to srsRAN via
LTE, and use them as the memory dumps for our Dynamic
Memory Restoring algorithm.

6.1. Qualitative Evaluation

To evaluate BASEBRIDGE, we compare UL responses
to various DL packets sent over the DCCH channel. Within
Subsection 6.1.1, we evaluate our test packets: We built a
broad set of test packets, containing representative RRC and
NAS packets on the DL DCCH channel. Each packet con-
tains default values and the minimum required Information
Elements (IEs). We send each packet to BASEBRIDGE, plain
FIRMWIRE, and the physical UE to compare the UL packets
sent in response. Naturally, we consider responses from the
physical UE as our ground truth.

Within Subsection 6.1.2, we verify BASEBRIDGE and
FIRMWIRE against several conformance tests, specified by
the 3GPP and originally intended to verify the conformance
of COTS UEs to the cellular specifications [2], [3]. Each
conformance test consists of one or multiple RRC and NAS
DL messages that we send to both emulators, observing
their UL responses and verifying them against the criteria
defined by the test. Compared to our own test cases, the con-
formance tests verify fewer different network packet types,

3. FW versions A415FXXS2DWA2 and G970FXXSGHWC2

but do so in a more in-depth way by triggering specific
functionalities via clearly defined packets, sometimes even
involving multiple packets send and received in sequence.

6.1.1. Test Messages. The results from replaying our DL
test packets are shown in Table 2. This table only shows
DL messages that trigger a UL response from the physical
UEs (i.e., they are neither silently processed nor discarded).
Appendix A lists all packets. To estimate the effectiveness of
BASEBRIDGE, we additionally compare the number of basic
blocks executed between FIRMWIRE and BASEBRIDGE
during the processing of our test packets. The relative dif-
ference in discovered basic blocks between FIRMWIRE and
BASEBRIDGE is shown in column δBB.

We find that, with the exception of the emulated Me-
diaTek baseband not responding to the RRC Reconfigu-
rationRequest, both emulated basebands respond with the
same UL packets as the physical UE. This is in stark con-
trast to FIRMWIRE, where the emulated basebands do not
respond to any DL packet. Upon inspecting the log traces,
we find that Samsung firmware validates the RRC state
immediately after parsing the DL packet. As FIRMWIRE is
missing this state, the baseband will discard the DL message
in almost all cases immediately without any message pro-
cessing. The MediaTek firmware has a similar check, which
is passed for some messages as the original FIRMWIRE
RRC implementation manually populates select state vari-
ables. However, it discards all packets shortly after they have
been parsed due to further (message-specific) state checks.

Upon further analysis, we notice that BASEBRIDGE’s
emulated MediaTek baseband does not respond to the
RRC ReconfigurationRequest due to failure of a component
named L2COPRO. We suspect that this stands for Layer-
2 co-processor, a dedicated component used in baseband
architectures to accelerate integrity protection and compres-
sion of packets. As this peripheral is missing in the emu-
lator, the request fails and the emulated baseband firmware
crashes. We note that such dependencies on specific periph-
erals are an exception – all other DL packets are processed
and responded to. This example also showcases the architec-
tural differences between baseband vendors, as the Samsung
baseband correctly responds to the RRC Reconfiguration-
Message when emulated via BASEBRIDGE.

Overall, our evaluation shows that BASEBRIDGE in-
creases the number of covered basic blocks by an average
factor of 2.41x or 5.54x (depending on baseband vendor).
This illustrates the huge impact of automatically restoring
connection state. In the context of security testing, this added
coverage corresponds to additional attack surface that is now
reachable for evaluation and fuzz testing.

6.1.2. Conformance Tests. Our test packets provide a broad
evaluation but do not necessarily trigger semantically com-
plex functionality. Thus, we also evaluated BASEBRIDGE
using conformance tests. The 3GPP provides extensive doc-
umentation on conformance tests, meant to qualify COTS
UEs before production. For LTE, TS36.523-1 and TS36.508
specify these tests [2], [3]. Each conformance test specifies



TABLE 2. UL RESPONSES TO DL MESSAGES BETWEEN THE UE, FIRMWIRE AND BASEBRIDGE. A UL RESPONSE IN GREEN DEPICTS A MATCHING
RESPONSE BETWEEN THE UE AND BASEBRIDGE, WHEREAS AN UL RESPONSE DEPICTED WITH A ”-” CORRESPONDS TO A MISSING UL REPONSE.

Message Vendor Expected Response
Reponse

FIRMWIRE

Response
BASEBRIDGE

BBcov FIRMWIRE BBcov BASEBRIDGE δBB

Samsung RRCConnectionReconfigurationComplete 3859 6767 1.75
RRCConnectionReconfiguration (RRC)

MediaTek
RRCConnectionReconfigurationComplete -

- 220 1757 7.99
Samsung 2210 3130 1.42

SecurityModeCommand (RRC)
MediaTek

SecurityModeFailure - SecurityModeFailure
203 468 2.31

Samsung 2226 3885 1.75
UECapabilityEnquiry (RRC)

MediaTek
UECapabilityInformation - UECapabilityInformation

214 2048 9.57
Samsung 2235 3870 1.73

CounterCheck (RRC)
MediaTek

CounterCheckResponse - CounterCheckResponse
202 556 2.75

Samsung 2325 2990 1.29
UEInformationRequest-r9 (RRC)

MediaTek
UEInformationResponse-r9 - UEInformationResponse-r9

195 503 2.58
Samsung - - - 2217 3681 1.66

DetachAccept (NAS)
MediaTek EMMStatus - EMMStatus 205 1167 5.69
Samsung 2218 4776 2.15

DetachRequest (NAS)
MediaTek

DetachAccept - DetachAccept
205 4434 21.63

Samsung GUTIReallocationComplete - GUTIReallocationComplete 2218 4837 2.18
GUTIReallocationCommand (NAS)

MediaTek - - - 205 921 4.49
Samsung IdentityResponse - IdentityResponse 2219 4796 2.16

IdentityRequest (NAS)
MediaTek - - - 205 728 3.55
Samsung - - - 2217 3426 1.55

SecurityMode (NAS)
MediaTek SecurityModeReject - SecurityModeReject 205 1278 6.23
Samsung 2217 6102 2.75

DeactivateEPSBearerContextRequest (NAS)
MediaTek

DeactivateEPSBearerContextAccept - DeactivateEPSBearerContextAccept
205 2934 14.31

Samsung ESMStatus - ESMStatus 2218 6041 2.72
ESMInformationRequest (NAS)

MediaTek - - - 205 2749 13.41

the parameterisation of one or multiple DL packets that are
sent to the UE, and a series of checks on its UL responses.

For each test, TS36.523-1 provides information on the
protocol layers tested, and the state that the UE is expected
to be in, prior to the test being started. As implementing all
tests specified in the 6447 pages of TS36.523-1 is unfeasible,
we filtered the conformance tests for those that (1) concern
the RRC and NAS layers, the two primary protocols of
interest to us, (2) require the UE to be in a connected state,
the primary state of interest to us, and (3) do not require the
UE to be in an engineering mode not accessible to regular
users and thus irrelevant from a security perspective.

We implemented five of the conformance tests matching
these criteria in Python. Our implementation generates the
DL packets and encodes them using ASN.1 and the NAS
tabular encoding. We then observe UL messages sent by the
emulated basebands in FIRMWIRE and BASEBRIDGE by
attaching to their GSMTAP interfaces. All UL packets are
validated according to the rules defined in the conformance
test. An overview of the results is contained in Table 3.

The “Test procedure to check RRC CONNECTED
state” test sends a UECapabilityEnquiry message. The UE
should only respond whenever the RRC connection proce-
dure is already completed and the UE is not in an idle state.
Both emulated basebands pass this test in BASEBRIDGE,
but fail in FIRMWIRE due to a missing UL response.

The “RRC connection reconfiguration / Radio re-
source reconfiguration” test first sends a DL RRC Con-
nectionReconfiguration packet in which the network in-
structs the UE to setup logical channels, configures a power
headroom report, and specifies certain signal strengths to
be used. It then expects an RRC ConnectionReconfigu-
rationComplete in response, and subsequently performs a
test procedure to check the RRC_CONNECTED state of the
baseband.

This test fails for both emulated basebands in BASE-
BRIDGE and, curiously, for the physical Samsung UE. A
trace analysis reveals that for the MediaTek baseband, the
missing L2COPRO peripheral causes this issue, similar to
what we observed for the RRC ConnectionReconfiguration
in our test packets. For Samsung, even if not in-line with
the specification, the behaviour of the UE emulated with
BASEBRIDGE matches the physical UE’s implementation.

In the “MT-SMS over SGs / Active mode” test, a
Short Message Service (SMS) text message is sent from the
network to the UE. The test then verifies if the UE replies
with two acknowledgments, a CP-ACK acknowledging that
the SMS has been received, and an RP-ACK acknowledging
that the SMS was successfully decoded, forwarded to the
Application Processor (AP) running, e. g., Android, and
acknowledged by this processor. Only after this, the net-
work replies with another acknowledgment (the RP-ACK).
Without manual intervention, both basebands emulated via
BASEBRIDGE do not pass this test case. The MediaTek
baseband emulated via BASEBRIDGE responds with a CP-
ACK but the RP-ACK is missing for two reasons. First,
we had to implement, in three lines of code, a hook that
replies to the baseband’s attempt to forward the SMS to
the AP with the appropriate AT-Command. Second, we
had to restore three more memory chunks. We found these
chunks using the Dynamic Memory Restoring algorithm
after disabling its grouping step (Section 4.2). This usually
leads to many addresses being restored incorrectly, but by
applying it at a stage where most of the memory addresses
are already restored, this discovers the missing addresses for
this conformance test. With these adjustments the MediaTek
baseband successfully passes the conformance test.

The Samsung baseband succeeds to send a CP-ACK but
fails to reply with an RP-ACK. Upon inspecting the logs, we
notice the same issue as we encountered in the MediaTek



TABLE 3. CONFORMANCE TESTING RESULTS OF BASEBRIDGE. ✓: TEST PASSED, ✓: TEST PASSED WITH MANUAL INTERVENTION, ✗: TEST FAILED.

FIRMWIRE BASEBRIDGE
Protocol Name Reference Vendor # Packets # Packets Passed?

Test procedure to check TS 36.508 Samsung 1/2 2/2 ✓RRC RRC CONNECTED state 6.4.2.3 MediaTek 1/2 2/2 ✓
RRC connection reconfiguration / TS 36.523-1 Samsung 1/4 1/4 ✗RRC Radio resource reconfiguration 8.2.2.1 MediaTek 1/4 1/4 ✗

MT-SMS over SGs / TS 36.523-1 Samsung 1/4 2/4 ✗NAS Active mode 11.1.2 MediaTek 1/4 2/4 ✓
Identification procedure / TS 36.523-1 Samsung 1/2 2/2 ✓NAS IMEI requested 9.1.4.2 MediaTek 1/2 2/2 ✓
Identification procedure / TS 36.523-1 Samsung 1/2 2/2 ✓NAS IMEISV requested 9.1.4.2 MediaTek 1/2 2/2 ✓

baseband: the communication with the AP. However, we
were unable to identify a fix via manual intervention.

The “Identification procedure / IMEI requested” and
“Identification procedure / IMEISV requested” confor-
mance tests send a DL NAS Information Request packet.
This packet requests the UE to respond with its International
Mobile Equipment Identity (IMEI), or with its IMEISV – an
extended IMEI containing the software version installed on
the UE. The tests then verify whether the UE responds ac-
cordingly with a NAS Identity Response, containing the re-
quested identifier. All basebands emulated via BASEBRIDGE
pass this test, with no response via FIRMWIRE.

Our evaluation on both our self-created broad set of test
messages and the 3GPP compliance tests shows that BASE-
BRIDGE significantly increases the capabilities of emulated
basebands. Most importantly, we can achieve interactivity,
that is, the emulated basebands respond to DL packets with
UL packets, often matching the behavior of the physical
device. If we see deviations from the behavior of physical
basebands, we are able to examine them. As we have
seen, these deviations usually lead to missing UL responses
due to early termination of packet processing, and security
researchers are not mislead into thinking a physical UE
would exhibit a behavior that is only present in the emulated
version. Moreover, even in cases where missing peripherals
prevent progress, we achieve a significantly higher number
of executed basic blocks than FIRMWIRE. Our approach is
therefore a significant improvement over the state of the art,
even in cases where additional emulation of peripherals or
further manual intervention is strictly required.

6.2. Fuzz Testing with BASEBRIDGE

To further show the effectiveness of BASEBRIDGE, we
compare our tool against FIRMWIRE in 2 fuzzing evalu-
ations. In the first evaluation, we use plain AFL++ [11]
for both BASEBRIDGE and FIRMWIRE. For the second
evaluation we also conduct experiments for both BASE-
BRIDGE and FIRMWIRE, but implement a custom grammar-
aware mutator to increase the probability of a correctly
decoded RRC packet, as motivated below. While such an
approach has been discussed in previous research on OTA
fuzzing [12], [36], we are not aware of any publicly available
implementation of such a mutator.

Experiment setup. For each setup, we run 15 24-hour
trials on a server with 2 Intel(R) Xeon(R) Gold 5320 CPUs
(26 physical cores, 52 logical cores each). To minimize
scheduling noise, we instruct AFL++ (version 4.22a) to
use an interleaved pattern when assigning cores to our
fuzzing runs. We run 30 fuzzing experiments in parallel,
15 on each CPU. We use the same modkit harnesses as
described in Section 6, as well as a restore list file obtained
from replaying the DL messages from Subsection 6.1. All
coverage metrics are measured after the baseband is booted,
and thus do not include coverage that is unrelated to the
fuzzing input.

Custom mutator. We utilize AFL++’s Python interface for
custom mutators. On every mutation, an RRC packet type
is randomly chosen and an empty packet of this type is
created. It is then filled by recursively traversing the Abstract
Syntax Notation One (ASN1) definitions of RRC and gen-
erating random values for every component. Although NAS
is transported via RRC, NAS messages are not subject to
this generation algorithm as NAS packets do not use ASN1
encoding per the specification. Instead, NAS messages are
generated completely randomly. Our implementation could
easily be adopted to other protocols that facilitate ASN1.

Results. Figure 3a and Figure 3c show the coverage changes
within the first experiment, using the standard AFL++ muta-
tor. For the Samsung baseband, BASEBRIDGE outperforms
FIRMWIRE on average by 40149 basic blocks, an improve-
ment by a factor of 2.3. For the MediaTek baseband, we see
that BASEBRIDGE outperforms FIRMWIRE by 18729 basic
blocks, resulting in an improvement by a factor of 4.1.

Similarly Figure 3b and Figure 3d illustrate the coverage
differences in our second experiment, based on our custom
mutator. BASEBRIDGE outperforms FIRMWIRE on average
by 35852 basic blocks for Samsung, an improvement by
a factor of 3.1. In the same setup targeting MediaTek,
BASEBRIDGE outperforms FIRMWIRE on average by 11706
basic blocks, a more than 5x improvement. We speculate that
the custom mutator leads to larger relative improvements, as
most executions will explore a significant amount of state-
dependent functionality, while the AFL++ mutator explores
more state-independent parsing related error cases, slightly
decreasing the relative gap between both approaches.



0 2 4 6 8 10 12 14 16 18 20 22 24
Time in Hours

0

10000

20000

30000

40000

50000

60000

70000
M

ed
ia

n 
Nu

m
be

r o
f B

as
ic 

Bl
oc

ks

(a) Samsung baseband,
AFL++ mutator

0 2 4 6 8 10 12 14 16 18 20 22 24
Time in Hours

0

10000

20000

30000

40000

50000

M
ed

ia
n 

Nu
m

be
r o

f B
as

ic 
Bl

oc
ks

(b) Samsung baseband,
custom ASN1 mutator

0 2 4 6 8 10 12 14 16 18 20 22 24
Time in Hours

0

5000

10000

15000

20000

25000

M
ed

ia
n 

N
um

be
r o

f B
as

ic
 B

lo
ck

s

(c) MediaTek baseband,
AFL++ mutator

0 2 4 6 8 10 12 14 16 18 20 22 24
Time in Hours

0

2000

4000

6000

8000

10000

12000

14000

M
ed

ia
n 

N
um

be
r o

f B
as

ic
 B

lo
ck

s

(d) MediaTek baseband,
custom ASN1 mutator

Figure 3. Results of fuzzing runs showing median and a 95% confidence interval.— FIRMWIRE— BASEBRIDGE

We also calculated the per-task RRC coverage, follow-
ing the proxy measurements established by FIRMWIRE,
as shown in Table 4. Here, we see even more significant
differences compared to the plots. For MediaTek, BASE-
BRIDGE covers up to 22.5x the number of RRC related
basic blocks compared to FIRMWIRE for the MediaTek
RRC task. The difference is slightly less significant using
our custom mutator, as the gap between FIRMWIRE and
BASEBRIDGE shrinks to a factor of 18.9x. For Samsung,
we see that BASEBRIDGE covers 9.7 times as many basic
blocks of the RRC task using the default mutator and 9.0
times as many blocks using the custom mutator.

Our results indicate that the AFL++ greybox mutator
generally outperforms our blackbox grammar-aware muta-
tor. More broadly, this means that OTA-fuzzing, which is
generally blackbox, will likely suffer from the same limita-
tion, compared to greybox fuzzing enabled by emulation.
Our results also show that, using BASEBRIDGE, fuzzing
coverage of functionality closely related to the received mes-
sages (e.g., the RRC task) is improved over-proportionally,
while coverage of functionality not directly included within
the RRC processing is still significantly improved. Overall,
our results thus demonstrate the tremendous coverage im-
provements that BASEBRIDGE enables across both mutation
strategies and the entire emulated firmware.

TABLE 4. COVERAGE, MEASURED IN BASIC BLOCKS, OF THE RRC
TASK THROUGHOUT OUR FUZZING EXPERIMENTS.

FIRMWIRE BASEBRIDGE

Mutator AFL++ Custom AFL++ Custom
Samsung 2446 2386 23846 21381
MediaTek 374 353 8403 6688

TABLE 5. DISCOVERED VULNERABILITIES.

Message New find CVE ID Severity
Reconfiguration (RRC #2) ✓ outstanding medium
Reconfiguration (RRC #3) ✓ outstanding high
EMMInformation (NAS) ✗ CVE-2024-39343 high

Sa
m

su
ng

ModifyEPSBearerContextReq. (NAS) ✗ CVE-2023-21517 [28] high

ConnectionRelease (RRC #1) ✓ CVE-2024-20154 critical
DLTransport (NAS #1) ✓ CVE-2024-20149 medium

TrackingAreaUpdateAcc. (NAS #2) ✓ CVE-2024-20150 medium

M
ed

ia
Te

k

EMMInformation (NAS #3) ✗ CVE-2024-20039 high

6.3. Discovered Vulnerabilities

We also utilized BASEBRIDGE for long-lasting fuzzing
campaigns with the goal of vulnerability discovery, again
focusing on RRC and NAS messages using both the stan-
dard AFL++ mutator and our custom mutator. To aid these
fuzzing campaigns, we periodically re-ran the Dynamic



RRCConnectionRelease
releaseCause: 1 (other)
idleModeMobilityControlInfo:

freqPriorityListGERAN [
freqsPriorityGERAN:

carrierFreqs:
startingARFCN: 4
followingARFCNs:

variableBitMapOfARFCNs: 0xA000
cellReselectionPriority: 6

freqsPriorityGERAN:
carrierFreqs:

startingARFCN: 8
followingARFCNs:

variableBitMapOfARFCNs: 0x01
cellReselectionPriority: 2

]
t320: min180

Listing 2. Downlink RRC Connection Release packet using the
variableBitMapOfARFCNs feature exploited in RRC #1.

Memory Restoring algorithm to improve emulation accu-
racy based on generated inputs from previous fuzzing runs,
potentially revealing functionality not targeted by the DL
packets from Table 6.

Overall, our campaign found 8 vulnerabilities, with
5 previously unknown, as shown in Table 5. Below, we
provide case studies of selected discovered vulnerabilities,
and provide details of the remaining previously unknown
vulnerabilities in Appendix B.

RRC #1: Connection Release. When fuzzing the MediaTek
baseband firmware, we found that the firmware does not
correctly handle a combination of a timer value and a
cell reselection priority in the RRC ConnectionRelease DL
packet. Under normal operation, this feature is used to force
a physical UE to disconnect from the current network and
try to connect to another cell on another frequency, based on
an Absolute Radio Frequency Channel Number (ARFCN)
priority list supplied in this packet [4]. We found that when
supplying a certain frequency configuration, the firmware
will perform an out-of-bounds write to a variable on the
stack when storing the updated frequency priorities.

Specifically, this involves the startingARFCN
and variableBitMapOfARFCNs fields inside
idleModeMobilityControl. These fields are used to
pass a priority list of several ARFCNs in a compressed way:
If the bit at offset x in the variableBitMapOfARFCNs
is 1, the frequency channel represented by the ARFCN
(x + startingARFCN) (modulo 1024) is added to the
reselection priority list. For example, the packet shown
in Listing 2 configures a reselection priority of 6 for 3
different ARFCNs – 4 (the startingARFCN), 5 (because
the first bit in 0xA000 is 1) and 7 (because the third bit in
0xA000 is 1) – and a priority of 2 for ARFCNs 8 and 16.

An excerpt from the relevant part of MediaTek’s
firmware is shown in Listing 3. This parser copies
all prioritized ARFCNs into the priorityList array,
which can store a maximum of 128 different ARFCNs.
The outer for-loop (line 2) iterates over the bytes in
variableBitMapOfARFCNs, while the inner while-loop
(line 4) iterates over the individual bits to compute the

1 arfcn = startingArfcn;
2 for (i = 0; byteIdx < bitMapLen; byteIdx++) {
3 bitIdx = 7;
4 do {
5 arfcn = arfcn + 8 - bitIdx;
6 if ((1 << (bitIdx & 0x1f) & arfcnBitmap) != 0) {
7 frequencies->priorityList[arfcnIdx].arfcn = arfcn;
8 frequencies->priorityList[arfcnIdx].xyz = xyz;
9 arfcnIdx = arfcnIdx + 1 & 0xff;

10 if (arfcnIdx == 128) break;
11 }
12 bitIdx--;
13 } while (bitIdx != -1);
14 }

Listing 3. Reverse-engineered excerpt of ARFCN bitmap parsing in
MediaTek firmware.

corresponding ARFCN (line 5). When a bit in the bitmap
is 1 (line 6), the ARFCN is stored in the priorityList
(line 7). Once 128 different ARFCNs have been decoded,
only the inner loop is terminated (line 10); the outer loop
incorrectly continues with the next byte. As such, as long
as there is one more byte in the bitmap after this point, the
parser will overflow the priorityList array.

The next element in the frequencies struct after the
priorityList is a length value frequencies->len,
followed by a buffer frequencies->buf; these will be
overwritten when an overflow occurs. During processing of
the frequencies struct, len bytes of buf’s content are
copied to a fixed-sized stack-based buffer. Since both len
and buf are attacker-controlled after the overflow, they can
cause an overflow from the stack-based buffer into the return
address register stored on the stack. Our fuzzer found this
issue by generating a packet that overflowed the stack-based
buffer with zeroes, eventually setting the return address
register and program counter to 0 and causing a crash.

This vulnerability could potentially lead to remote code
execution, and since the RRCConnectionRelease packet is
accepted by basebands prior to enabling integrity protection
or encryption, it is exploitable without control of the cellular
network by broadcasting packets via an SDR. This vulner-
ability was previously unknown, and MediaTek assigned it
CVE-2024-20154 with critical severity.

RRC #2: Reconfiguration. This vulnerability is discovered
by our Samsung LTE RRC fuzzer whenever a malformed
RRC Reconfiguration message, containing a Maximum Con-
text Identifier (CID) field with a value greater than 16 is sent
over the DCCH channel (Listing 4) to the baseband.

According to the specification [1], the baseband should
be able to handle small (<=16) and large CIDs (>16),
indicated by the maxCID value. Upon receiving an RRC
Reconfiguration message with a pdcp-Config field, the
baseband allocates a heap buffer (buf) of 66 bytes, indepen-
dent of the CID value. We suspect that, within the 66 bytes,
22 bytes are used to store the enabled CIDs (bytes 3-18), and
2 bytes are used to store the maxCID value (bytes 19 and
20). Upon further processing, the baseband executes a for
loop, intended to write the value 1 maxCID times, starting
at buf + 3 (the CIDs). Whenever an attacker sends an
RRC Reconfiguration message containing a maxCID value



rrcConnectionReconfiguration
(..)
radioResourceConfigDedicated:

drb-ToAddModList: [
DRB-ToAddMod

drb-Identity: 1
pdcp-Config

discardTimer: infinity (7)
headerCompression: rohc (1)

rohc
maxCID: 5258

]

Listing 4. Downlink RRC Connection Reconfiguration packet using the
large maxCID feature exploited in RRC #2.

1 // &packet->encoded_nw_name is 255 bytes or less
2 byte nw_name_unpacked [260];
3 if (nw_name_encoding == 0) { // 7 bit encoding
4 csmss_gsm7_unpack(
5 nw_name_unpacked,
6 &packet->encoded_nw_name,
7 nw_name_len, 0
8 );
9 } else { // 8 bit encoding, no unpacking needed

10 memcpy(nw_name_unpacked,
11 &packet->encoded_nw_name,
12 nw_name_len);
13 }

Listing 5. Handling of the network name EMM Information in MediaTek
firmware.

greater than 62, the for loop causes an out-of-bounds heap
write to buf. Ultimately, upon freeing buf, the baseband
crashes with a PAL_MEM_GUAD_CORRUPTION. Google
has assigned a Medium severity to this vulnerability.

NAS #3: EMM Information. When fuzzing the MediaTek
baseband firmware, we found that the firmware does not
reserve enough space in memory for the network names
carried in EMM Information NAS packets. Network names
allow the user to identify to which Mobile Network Operator
they are connected. They can be sent using various encod-
ings; one is a 7-bit per character form of ASCII, which the
baseband needs to unpack to 8-bit ASCII for internal use.

Listing 5 shows an abbreviated version of MediaTek’s
implementation of this unpacking. The baseband firmware
allocates 260 bytes on the stack for the 8-bit encoded
network name, in nw_name_unpacked. If the received
network name in packet->encoded_nw_name is us-
ing 7 bits per character (line 3), then it is decoded via
csmss_gsm7_unpack(out, in, size). The NAS
parser, which we exclude in the sample for brevity, limits
the encoded_nw_name variable to 255 bytes. This means
that csmss_gsm7_unpack will write a theoretical maxi-
mum of 255 * 8/7 = 292 bytes to nw_name_unpacked,
overflowing the allocated stack space and overwriting the
stored return address register. Once the function returns, the
program counter is set to that value.

We have verified this vulnerability using the NAS packet
in Listing 6. The 7-bit encoded text payload corresponds to
268 bytes containing 0x3d when decoded to 8-bit ASCII.
csmss_gsm7_unpack will then overflow into 2 bytes of
the stored return address register – overwriting the last byte

Protocol discriminator: 0x7 (EPS mobility management)
Message type: 0x61 (EMM Information)

Element ID: 0x45 (Network Name - Short Name)
Length: 237
Spare bits: 6
Coding Scheme: 0
Text: 0xbd 0x5e 0xaf 0xd7 0xeb 0xf5 0x7a

(repeated for 235 bytes)

Listing 6. Downlink NAS message to trigger NAS #3.

with 0x3d and the previous byte with a null terminator
(0x00). The first part of the stored value remains 0x909f.
This diverts execution flow to the function at 0x909f003d,
which prints several log messages absent from normal exe-
cutions, allowing us to confirm it was reached.

This vulnerability was previously known by MediaTek
and was assigned CVE-2024-20039, but had not been
patched in the firmware version we were testing. The ex-
ternal researcher who originally found this vulnerability
kindly provided us with their vulnerability report which
revealed that they were not aware that this is a remote
code execution vulnerability, as their OTA approach did not
provide sufficient introspection to distinguish between an
attacker controllable program counter, and a mere denial of
service. This highlights the advantages of stateful testing
under emulation, as provided by BASEBRIDGE.

6.3.1. Over-The-Air reproduction. To ensure our fuzzing
results are also applicable to real devices, we reproduced
LTE NAS #1, #2, #3 and LTE RRC #1, #2, #3 over-the-air.

For vulnerabilties affecting MediaTek basebands, we
used a Samsung A41 and a Poco M4 Pro 5G4, and for those
affecting Samung basebands, the Google Pixel 6 and 85; the
Galaxy S10e was already end of life at the time of testing.

Setup. For the over-the-air reproduction, we used an SDR
(e. g., BladeRF or USRP) connected to a laptop. We used a
Faraday cage to avoid interference with legitimate cellular
networks. For the basestation software, we used srsRAN 4G
(release 23.11) built from source. We modified srsRAN to
send our payload after the RRC and NAS connections have
been established and integrity protection has been enabled
on both layers. This is consistent with the fact that the
crash dumps (and thus the state) used by BASEBRIDGE were
captured from UEs in connected state.

We confirmed a Cellular Processor (CP) crash visually
by observing the loss of connection displayed on the mobile
device’s screen, as well as systematically by either analyz-
ing the mobile device’s radio logs (Android Debug Bridge
(ADB) Logcat) or by flashing a User Debug Android image
on the Pixel devices and observing crash dump files.

Results. We successfully reproduced all tested vulnerabili-
ties against at least one physical UE resulting in the expected
crash. As discussed above, we further verified the LTE NAS
#3 RCE vulnerability by directing execution to a normally

4. FW versions A415FXXS2DWA2 and V816.0.1.0.TGBEUXM
5. FW versions AP2A.240905.003.F1 and AP3A.241105.007



unused function, and checking the baseband logs to confirm
the presence of log messages created by this function.

7. Discussion

Applicability to other cellular generations. Although our
experiments focus on LTE implementations, we believe
that BASEBRIDGE’s approach seamlessly scales to protocol
stacks of other cellular generations. Since no baseband
emulator currently supports firmware of a 5G baseband, we
have not evaluated BASEBRIDGE on the 5G protocol and
we argue that adding support for 5G UEs is primarily an
engineering effort beyond the scope of this paper.

However, we tested BASEBRIDGE’s approach for Sam-
sung’s 2G GSM and GPRS stacks, inspired by concurrent
work on reverse-engineered state for fuzzing purposes based
on significant manual effort [14], [15]. Using BASEBRIDGE
we were able to replicate the findings of this work, including
complex intra-stack communication and re-discovery of vul-
nerabilities with very little additional work. Hence, we think
that once emulators for other protocol stacks, including 5G,
are available, BASEBRIDGE will directly be applicable and
tremendously aid dynamic analysis.

Applicability to other firmware images. Although our
experiments focus on firmware images of a Samsung Galaxy
S10e (Samsung) and a Samsung Galaxy A41 (MediaTek),
BASEBRIDGE’s approach is scalable to other firmware im-
ages. As a proxy, we tested BASEBRIDGE’s approach on
the firmware images of a rooted Motorola One Vision and
a non-rooted Samsung Galaxy S96, both using Samsung
basebands. Using BASEBRIDGE, we successfully replayed
the DL messages from Table 6, matching the response in
BASEBRIDGE to the physical UEs. Overall, the Motorola
One Vision produces a 2.04x increase, while the Samsung
Galaxy S9 produces a 2.02x increase in coverage with
BASEBRIDGE compared to FIRMWIRE. The Motorola One
Vision also shows our ability of retrieving a crash dump
from a UE that does not expose a debug menu, leveraging
an IOCTL command instead.

Interestingly, and in contrast to the previously tested
Samsung S10e, both UEs respond with a NAS SecurityMod-
eAccept upon receiving a NAS SecurityMode DL message,
even after the security mode has already been configured.
This is true for both, the physical UE and the emulated
baseband in BASEBRIDGE. This shows that different Sam-
sung basebands can behave differently when receiving the
same DL message, and that BASEBRIDGE is capable of
maintaining these differences in emulation.

Restoring different states. The experiments above are
based on memory dumps obtained from physical basebands
in the RRC_CONNECTED state, as this state offers the
largest amount of functionality. Memory dumps can also be
obtained in other states defined by the cellular specification,

6. FW versions KANE_RETEU_11_RSA31.Q1-48-36-23 and
G960FXXS7CSJ3

by following the specification’s procedures to reach those
states on the physical baseband and using one of the methods
described in Subsection 4.1 to obtain the dump.

However, generating memory dumps in more fine-
grained states (such as in the middle of a authentication
procedure) is not always possible. These states are often
implementation-specific, requiring manual effort to deter-
mine which states exist and how to reach them. Many such
states are also transient – the baseband will leave them
within a few milliseconds, making it infeasible to manually
trigger a memory dump. As such, it may not be practical
to obtain memory dumps for these states, which limits
BASEBRIDGE’s capabilities in these scenarios.

An alternative approach for reaching some of these fine-
grained states using BASEBRIDGE is to start emulation by
restoring a well-defined state, and then send a sequence of
packets to the emulator to reach the desired fine-granular
state. Although limitations, such as missing peripherals,
mean that this approach may not always work as-is, our
conformance test results demonstrated that BASEBRIDGE is
generally capable of handling such complex procedures.

Restoring state vs improving emulation capabilities. As
discussed, enabling baseband emulators to be able to reach
specific states independently, without the need for restoring
state from a real device would be a huge effort, requiring
support for a large number of peripherals (including SIM
cards, DSP logic and RF frontends). This would require
tedious reverse-engineering and is likely to be highly device-
and vendor-specific. However, improving emulator fidelity
may well improve BASEBRIDGE’s coverage, especially if
applied in a targeted fashion as a response to encountered
issues. For example, peripheral emulation could be improved
by researchers when incomplete emulation is clearly pre-
venting progress on a certain path, such as the issue we
encountered with the MediaTek firmware due to the missing
emulation of the L2COPRO peripheral.

This approach seems likely to provide an ideal com-
promise, allowing researchers to continue to benefit from
restored state without the need to invest the effort required
for complete emulation. Additionally, BASEBRIDGE’s im-
proved dynamic analysis capabilities may ease the reverse-
engineering required for such improvements.

BASEBRIDGE beyond fuzzing. We have shown that BASE-
BRIDGE significantly increases the amount of baseband
functionality reachable by emulator-based fuzzing cam-
paigns, allowing such testing to be done using a scalable
emulation approach rather than brittle, expensive and non-
scalable OTA testing methods. We believe our approach will
enable similar scaling in other areas beyond fuzzing, es-
pecially since BASEBRIDGE enables interactivity complete
with UL responses. For example, BASEBRIDGE could pro-
vide similar benefits for state-of-the-art UE security testing
techniques [7], [34] which currently rely on OTA testing.



8. Related Work

Protocol security. Several previous works propose model-
based methods to discover security flaws in cellular pro-
tocols or their implementations. 5GReasoner [19] proposes
a formal verification model for 5G, and LTEInspector [18]
developed a symbolic model checker to discover security
flaws in the LTE protocol. Basespec [23] combines static
analysis with symbolic execution to find mismatches be-
tween the specification’s NAS message structure and the
message structure assumed by the baseband’s internal mes-
sage parsers. BaseComp [22] proposes a semi-automatic ap-
proach by combining static analysis with symbolic execution
to discover discrepancies between the specification and the
baseband’s NAS integrity protection implementation.

Other approaches to find protocol-related security vul-
nerabilities involve OTA testing [6], [21]. 5GBaseChecker
[42] and DIKEUE [20] utilize automata learning to model
the cellular protocol’s behavior as a Finite State Machine
(FSM). Protocol security flaws are found by analyzing
inputs that result in deviating FSMs through differential
testing. DoLTEst [34] tests COTS devices OTA against a
deterministic oracle when handling negative RRC and NAS
messages to reveal flaws in the implementation of LTE pro-
tocols. Other work deduces implementation security flaws
via specification analysis [7], [8], [25] and then verify them
OTA. Similarly, recent industry work [41] developed an
automated framework to identify security policy violations
in 5G UE implementations. With BASEBRIDGE, we enable
much more introspection into the baseband’s internal state,
while incorporating the stateful advantages of OTA testing.

Cellular security. A common tool to uncover implemen-
tation flaws in basebands is static analysis. BVFinder [31]
proposes a semantic-enhanced vulnerability detector using
static taint analysis, while BaseMirror [29] proposes a static
binary analysis tool to automatically reverse baseband com-
mands from Radio Interface Layer (RIL) binaries.

Contrary to static analysis, Beserker [36] proposes a
mutation-based fuzzer to randomly test LTE RRC and
NAS messages. CovFuzz [40] implements a coverage-based
fuzzer to fuzz the LTE and 5G - NAS attach message. Sim-
ilarly, recent industry work such as 5GHoul [13] discovered
several implementation flaws in MediaTek and Qualcomm
basebands. Unlike existing static analysis-based or OTA-
based approaches, BASEBRIDGE leverages the advantages
of emulation-based testing.

Recently, rehosting of baseband firmware has drawn a
lot of attention. In addition to FIRMWIRE [17], BaseSafe
[32] combines partial system emulation with coverage-
based fuzzing to allow for in-depth introspection into the
baseband’s internal code with fast, off-device COTS UE
fuzzing. Similarly, recent work from industry developed
closed-source emulators for baseband firmware [26], [27],
[39], [44]. Additionally, SIMurai [30] offers a software
implementation of a SIM capable of communicating with
an emulated baseband through FIRMWIRE, allowing to fuzz
SIM related functionality in the baseband. Unlike existing

rehosting approaches, BASEBRIDGE leverages the advan-
tages of stateful testing.

Instead of analyzing the UE, other research is tailored
towards the core network. For example, RANsacked [5]
proposes a grammar-based fuzzer to generate payloads trig-
gering implementation errors in the 5G core network, while
others [12], [24] also target the BTSs using similar fuzzing
approaches.

Stateful analysis & state transfer. Research on rehost-
ing, especially the field of hardware-in-the-loop rehosting,
often relies on transfering state from a physical device
to an emulator [10], [43]. The closest rehosting study to
BASEBRIDGE is Frankenstein [37] which emulates and
fuzzes Bluetooth firmware based on a physical device’s
memory dump. However, in contrast to BASEBRIDGE, prior
approaches could rely on restoring and emulating the full
dump, whereas BASEBRIDGE needs to selectively and iter-
atively restore state due to the much higher complexity of
baseband firmware.

Outside the domain of rehosting, AFLnet [35] proposes
to incorperate the server’s state as feedback mechanism
in fuzzing servers. The server’s state is deduced from the
server’s response code to incoming message sequences.

9. Conclusion

We have demonstrated that BASEBRIDGE is practical
by implementing a prototype supporting two completely
different baseband firmwares from two different vendors. In
both cases we obtain significantly increased coverage com-
pared to existing approaches, as well as improved accuracy
of the emulated baseband as reflected in the response to
test messages. This demonstrates the importance of state in
baseband firmware, as well as the benefits of our approach
which restores this state from a real device. The value of
these improvements is confirmed by the new vulnerabilities
we found when fuzzing protocols which have already been
extensively covered by previous work.

Acknowledgments

We thank our anonymous reviewers for their valuable
comments and suggestions. This work was supported by
the German Federal Office for Information Security (FKZ:
Pentest-5GSec - 01MO23025B), the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy - EXC 2092 CASA -
390781972, and by NWO through NWA ORC “INTER-
SECT” and project 20475 ''P6''. For the purpose of open
access, the authors have applied a Creative Commons Attri-
bution (CC BY) license to any Accepted Manuscript version
arising.

References

[1] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Packet
Data Convergence Protocol (PDCP) specification. TS 36.323, 3rd
Generation Partnership Project (3GPP), 01 2010.



[2] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Packet Core (EPC); Common test environments for User
Equipment (UE) conformance testing. TS 36.508, 3rd Generation
Partnership Project (3GPP), 06 2011.

[3] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Packet Core (EPC); User Equipment (UE) conformance
specification; Part 1: Protocol conformance specification. TS 36.523-
1, 3rd Generation Partnership Project (3GPP), 06 2011.

[4] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio
Resource Control (RRC); Protocol specification. TS 36.331, 3rd
Generation Partnership Project (3GPP), 06 2011.

[5] Nathaniel Bennett, Weidong Zhu, Benjamin Simon, Ryon Kennedy,
William Enck, Patrick Traynor, and Kevin RB Butler. Ransacked: A
domain-informed approach for fuzzing lte and 5g ran-core interfaces.
In Proceedings of the 2024 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’24, 2024.

[6] Evangelos Bitsikas, Syed Khandker, Ahmad Salous, Aanjhan Ran-
ganathan, Roger Piqueras Jover, and Christina Pöpper. UE Security
Reloaded: Developing a 5G Standalone User-Side Security Testing
Framework. In Proceedings of the 16th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, 2023.

[7] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang,
Xiaozhong Liu, Haixu Tang, and Baoxu Liu. Sherlock on Specs:
Building LTE Conformance Tests through Automated Reasoning.
In 32nd USENIX Security Symposium (USENIX Security 23), pages
3529–3545, Anaheim, CA, August 2023. USENIX Association.

[8] Yi Chen, Yepeng Yao, XiaoFeng Wang, Dandan Xu, Chang Yue,
Xiaozhong Liu, Kai Chen, Haixu Tang, and Baoxu Liu. Bookworm
Game: Automatic Discovery of LTE Vulnerabilities Through Doc-
umentation Analysis. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1197–1214, 2021.

[9] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and
Ryan Whelan. Repeatable reverse engineering with panda. In
Proceedings of the 5th Program Protection and Reverse Engineering
Workshop, PPREW-5, New York, NY, USA, 2015. Association for
Computing Machinery.

[10] Andrew Fasano, Tiemoko Ballo, Marius Muench, Tim Leek, Alexan-
der Bulekov, Brendan Dolan-Gavitt, Manuel Egele, Aurélien Francil-
lon, Long Lu, Nick Gregory, et al. Sok: Enabling security analyses of
embedded systems via rehosting. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2021.

[11] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
AFL++ : Combining incremental steps of fuzzing research. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20). USENIX
Association, August 2020.

[12] Matheus E. Garbelini, Zewen Shang, Sudipta Chattopadhyay, Sumei
Sun, and Ernest Kurniawan. Towards Automated Fuzzing of 4G/5G
Protocol Implementations Over the Air. In GLOBECOM 2022 - 2022
IEEE Global Communications Conference, pages 86–92, 2022.

[13] Matheus E. Garbelini, Zewen Shang, Shijie Luo, Sudipta Chattopad-
hyay, Sumei, and Ernest Kurniawan. 5GHOUL: Unleashing Chaos
on 5G Edge Devices. Technical report, Singapore University of
Technology and Design (SUTD) and I2R, A*STAR, 2023.

[14] Dyon Goos and Marius Muench. Fuzzing GPRS Layer-2 for Fun and
Profit. Hardwear.io Netherlands 2024, 2024.

[15] Dyon Goos and Marius Muench. Overcoming State: Finding Base-
band Vulnerabilities by Fuzzing Layer-2. Black Hat USA, 2024.

[16] GSMA. The Mobile Economy 2023, 2023.

[17] Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn,
Shinjo Park, Tobias Scharnowski, Tyler Tucker, Patrick Traynor,
and Kevin R. B. Butler. FirmWire: Transparent Dynamic Analysis
for Cellular Baseband Firmware. In Symposium on Network and
Distributed System Security (NDSS) , 2022.

[18] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa
Bertino. LTEInspector: A Systematic Approach for Adversarial
Testing of 4G LTE. In Network and Distributed System Security
Symposium, 2018.

[19] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowd-
hury, and Elisa Bertino. 5GReasoner: A Property-Directed Security
and Privacy Analysis Framework for 5G Cellular Network Protocol.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’19, page 669–684, New York,
NY, USA, 2019. Association for Computing Machinery.

[20] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq, Omar
Chowdhury, and Elisa Bertino. Noncompliance as Deviant Behavior:
An Automated Black-box Noncompliance Checker for 4G LTE Cellu-
lar Devices. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’21, page 1082–1099,
New York, NY, USA, 2021. Association for Computing Machinery.

[21] Syed Khandker, Michele Guerra, Evangelos Bitsikas, Roger Piqueras
Jover, Aanjhan Ranganathan, and Christina Pöpper. ASTRA-5G:
Automated Over-the-Air Security Testing and Research Architecture
for 5G SA Devices. In Proceedings of the 17th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, WiSec ’24,
page 89–100, New York, NY, USA, 2024. Association for Computing
Machinery.

[22] Eunsoo Kim, Min Woo Baek, CheolJun Park, Dongkwan Kim, Yong-
dae Kim, and Insu Yun. BASECOMP: A Comparative Analysis
for Integrity Protection in Cellular Baseband Software. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 3547–
3563, Anaheim, CA, August 2023. USENIX Association.

[23] Eunsoo Kim, Dongkwan Kim, CheolJun Park, Insu Yun, and Yongdae
Kim. BaseSpec: Comparative analysis of baseband software and
cellular specifications for l3 protocols. In Proceedings of the 2021
Annual Network and Distributed System Security Symposium (NDSS),
Online, February 2021.

[24] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. Touching the
Untouchables: Dynamic Security Analysis of the LTE Control Plane.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 1153–
1168, 2019.

[25] Daniel Klischies, Moritz Schloegel, Tobias Scharnowski, Mikhail
Bogodukhov, David Rupprecht, and Veelasha Moonsamy. Instructions
Unclear: Undefined Behaviour in Cellular Network Specifications.
In 32nd USENIX Security Symposium (USENIX Security 23), pages
3475–3492, Anaheim, CA, August 2023. USENIX Association.

[26] Daniel Komaromy. Basebanheimer: Now I Am Become Death, The
Destroyer of Chains. Hardwear.io Netherlands, 2023.

[27] Daniel Komaromy. There will be Bugs: Exploiting Basebands in
Radio Layer Two. CanSecWest, 2024.

[28] David Komaromy. CVE-2023-21517: Samsung Baseband LTE ESM
TFT Heap Buffer Overflow, 2023.

[29] Wenqiang Li, Haohuang Wen, and Zhiqiang Lin. BaseMirror: Auto-
matic Reverse Engineering of Baseband Commands from Android’s
Radio Interface Layer. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’24,
2024.

[30] Tomasz Piotr Lisowski, Merlin Chlosta, Jinjin Wang, and Marius
Muench. SIMurai: Slicing Through the Complexity of SIM Card
Security Research. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 4481–4498, Philadelphia, PA, August 2024.
USENIX Association.

[31] Yiming Liu, Cen Zhang, Feng Li, Yeting Li, Jianhua Zhou, Jian Wang,
Lanlan Zhan, Yang Liu, and Wei Huo. Semantic-Enhanced Static
Vulnerability Detection in Baseband Firmware. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering,
ICSE ’24, New York, NY, USA, 2024. Association for Computing
Machinery.



[32] Dominik Maier, Lukas Seidel, and Shinjo Park. BaseSAFE: baseband
sanitized fuzzing through emulation. In Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
WiSec ’20, page 122–132, New York, NY, USA, 2020. Association
for Computing Machinery.

[33] P1 Security S.A.S. GitHub: QCSuper. https://github.com/P1sec/
QCSuper, 2024. [Online; accessed May 7, 2025].

[34] CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee, Eunkyu Lee,
Insu Yun, and Yongdae Kim. DoLTEst: In-depth Downlink Negative
Testing Framework for LTE Devices. In 31st USENIX Security
Symposium (USENIX Security 22), pages 1325–1342, Boston, MA,
August 2022. USENIX Association.

[35] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Aflnet:
A greybox fuzzer for network protocols. In 2020 IEEE 13th Inter-
national Conference on Software Testing, Validation and Verification
(ICST), pages 460–465, 2020.

[36] Srinath Potnuru and Prajwol Kumar Nakarmi. Berserker: ASN.1-
based Fuzzing of Radio Resource Control Protocol for 4G and
5G. In 2021 17th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), pages 295–
300, 2021.

[37] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick.
Frankenstein: Advanced Wireless Fuzzing to Exploit New Bluetooth
Escalation Targets. In 29th USENIX Security Symposium (USENIX
Security 20), pages 19–36. USENIX Association, August 2020.

[38] Roger Piqueras Jover Sherk Chung, Stephan Chen and Ivan Lozano.
Pixel’s Proactive Approach to Security: Addressing Vulnerabilities in
Cellular Modems. Google Security Block (Online; Accessed 2024-
11-13), 2024.

[39] Natalie Silvanovich. How to Hack Shannon Baseband (from a Phone).
Hardwear.io USA, 2023.

[40] Ilja Siroš, Dave Singelée, and Bart Preneel. Covfuzz: Coverage-based
fuzzer for 4g&5g protocols, 2024.

[41] Kai Tu and Yilu Dong. Cracking the 5G Fortress: Peering Into 5G’s
Vulnerability Abyss. BlackHat USA, 2024.

[42] Kai Tu, Abdullah Al Ishtiaq, Syed Md Mukit Rashid, Yilu Dong,
Weixuan Wang, Tianwei Wu, and Syed Rafiul Hussain. Logic
Gone Astray: A Security Analysis Framework for the Control Plane
Protocols of 5G Basebands. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 3063–3080, Philadelphia, PA, August
2024. USENIX Association.

[43] Christopher Wright, William A Moeglein, Saurabh Bagchi, Milind
Kulkarni, and Abraham A Clements. Challenges in firmware re-
hosting, emulation, and analysis. ACM Computing Surveys (CSUR),
2021.

[44] Xiling Gong Xuan Xing, Eugene Rodionov and Farzan Karimi. Over
the Air, Under the Radar Attacking and Securing the Pixel Modem.
Black Hat USA, 2023.

Appendix A.
Additional Test Results

We provide the extended version of the UL responses to
DL Messages, including all used messages and conformance
tests in Table 6.

Appendix B.
Additional Vulnerability Details

RRC #3: Reconfiguration. This vulnerability is discov-
ered by our Samsung LTE fuzzer, whenever a malformed
RRC Reconfiguration message is sent over the DCCH

channel. Upon receiving such a message, the baseband
allocates a heap block of 1208 zero-bytes to store UL
related radio configurations. Later, the baseband retrieves the
pucch-ConfigDedicated-v1370 IE and copies 20
bytes into the allocated heap block. Eventually, the baseband
uses the first byte from this block as the size used for a
memory copy operation from an offset in our heap block
to a stack buffer. From introspection, we suspect that an
attacker does not control the heap buffer bytes copied into
the stack buffer, and these bytes appear to be 0. Whenever
the baseband tries to return from this parsing function, the
baseband will crash in the RESET function after a program
counter value of 0 is popped from the stack. Even though,
the specification specifies that this message should only be
accepted in the RRC_CONNECTED state [4], we verified
that this vulnerability can be reached before the over-the-
air security security establishment. Google has assigned a
high severity to this vulnerability.

NAS #1: DL Transport. When fuzzing the MediaTek base-
band firmware, we found that the firmware does not handle
empty Downlink NAS Transports appropriately. When re-
ceiving a DL NAS Transport packet, the baseband allocates
a buffer in memory. Whenever the size of the payload is
zero, the baseband allocates a buffer of length zero. This
fails with an assertion, which leads to a forced crash. The
vulnerability was previously unknown, has been assigned
CVE-2024-20149 and was rated as medium severity by
MediaTek, as it allows an attacker to disable all connectivity
of a physical UE over the air, until the baseband is restarted.

NAS #2: Tracking Area Update (TAU) Accept. When
fuzzing the MediaTek baseband firmware, we found that the
firmware does not correctly validate the length of Tracking
Area Identity (TAI) lists carried in TAU Accept packets. TAI
lists consist of multiple partial TAI list elements. Whenever
the sum of the lengths of the partial lists is greater than
the signaled length of the containing TAI list, parts of the
transferred list are written out of bounds during decoding.
This out of bounds write overwrites a pointer in a control
structure. This pointer is immediately de-referenced and read
from in the next step of the processing chain, allowing an
adversary to turn this into an arbitrary read. We did not
identify a channel allowing us to disclose the results of this
read. However, by supplying an invalid memory address, an
adversary can use this vulnerability to crash the baseband.
The issue was previously unknown, has been assigned CVE-
2024-20150 and was rated as medium severity by MediaTek,
as it – at the bare minimum – allows an attacker to disable all
connectivity of a physical UE over-the-air until the baseband
is restarted.

https://github.com/P1sec/QCSuper
https://github.com/P1sec/QCSuper


TABLE 6. UL RESPONSES TO DL MESSAGES (EXTENDED).

Message Vendor Expected Response
Reponse

FIRMWIRE

Response

BASEBRIDGE
BBcov FIRMWIRE BBcov BASEBRIDGE δBB

Samsung 3083 5459 1.77
RRCConnectionRelease (RRC)

MediaTek
- - -

206 3614 17.54

Samsung RRCConnectionReconfigurationComplete 3859 6767 1.75
RRCConnectionReconfiguration (RRC)

MediaTek
RRCConnectionReconfigurationComplete -

- 220 1757 7.99

Samsung 2210 3130 1.42
SecurityModeCommand (RRC)

MediaTek
SecurityModeFailure - SecurityModeFailure

203 468 2.31

Samsung 2226 3885 1.75
UECapabilityEnquiry (RRC)

MediaTek
UECapabilityInformation - UECapabilityInformation

214 2048 9.57

Samsung 2235 3870 1.73
CounterCheck (RRC)

MediaTek
CounterCheckResponse - CounterCheckResponse

202 556 2.75

Samsung 2226 2170 0.97
CSFBParameterResponseCDMA2000 (RRC)

MediaTek
- - -

168 267 1.59

Samsung 1836 1489 0.81
DLDedicatedMessageSegment-r16 (RRC)

MediaTek
- - -

151 250 1.66

Samsung 2164 2867 1.32
HandoverFromEUTRAPreparationRequest (RRC)

MediaTek
- - -

161 260 1.61

Samsung 2200 2136 0.97
LoggedMeasurementConfiguration-r10 (RRC)

MediaTek
- - -

246 357 1.45

Samsung 2231 3193 1.43
MobilityFromEUTRACommand (RRC)

MediaTek
- - -

207 1899 9.17

Samsung 2325 2990 1.29
UEInformationRequest-r9 (RRC)

MediaTek
UEInformationResponse-r9 - UEInformationResponse-r9

195 503 2.58

Samsung 2227 17551 7.88
AttachAccept (NAS)

MediaTek
- - -

205 765 3.73

Samsung 2218 3930 1.77
AttachReject (NAS)

MediaTek
- - -

205 728 3.55

Samsung 2218 23868 10.76
AuthenticationReject (NAS)

MediaTek
- - -

205 728 3.55

Samsung 2218 3918 1.77
AuthenticationRequest (NAS)

MediaTek
- - -

205 728 3.55

Samsung - - - 2217 3681 1.66
DetachAccept (NAS)

MediaTek EMMStatus - EMMStatus 205 1167 5.69

Samsung 2218 4776 2.15
DetachRequest (NAS)

MediaTek
DetachAccept - DetachAccept

205 4434 21.63

Samsung 2218 4483 2.02
EMMInformation (NAS)

MediaTek
- - -

205 1650 8.05

Samsung 2218 3770 1.70
EMMStatus (NAS)

MediaTek
- - -

205 854 4.17

Samsung GUTIReallocationComplete - GUTIReallocationComplete 2218 4837 2.18
GUTIReallocationCommand (NAS)

MediaTek - - - 205 921 4.49

Samsung IdentityResponse - IdentityResponse 2219 4796 2.16
IdentityRequest (NAS)

MediaTek - - - 205 728 3.55

Samsung - - - 2217 3426 1.55
SecurityMode (NAS)

MediaTek SecurityModeReject - SecurityModeReject 205 1278 6.23

Samsung 2218 13627 6.14
ServiceReject (NAS)

MediaTek
- - -

205 728 3.55

Samsung 2218 17168 7.74
TAUAccept (NAS)

MediaTek
- - -

205 1034 5.04

Samsung 2219 3840 1.73
TAUReject (NAS)

MediaTek
- - -

205 728 3.55

Samsung 2217 3414 1.54
ActivateDefaultEPSBearer (NAS)

MediaTek
- - -

205 708 3.45

Samsung 2218 3409 1.54
BearerResourceAllocationReject (NAS)

MediaTek
- - -

205 708 3.45

Samsung 2218 3409 1.54
BearerResourceModificationReject (NAS)

MediaTek
- - -

205 708 3.45

Samsung 2217 6102 2.75
DeactivateEPSBearerContextRequest (NAS)

MediaTek
DeactivateEPSBearerContextAccept - DeactivateEPSBearerContextAccept

205 2934 14.31

Samsung ESMStatus - ESMStatus 2218 6041 2.72
ESMInformationRequest (NAS)

MediaTek - - - 205 2749 13.41

Samsung 2219 3409 1.54
ModifyEPSBearerContextRequest (NAS)

MediaTek
- - -

205 708 3.45

Samsung 2218 3399 1.53
Notification (NAS)

MediaTek
- - -

205 708 3.45

Samsung 2218 3399 1.53
ESMStatus (NAS)

MediaTek
- - -

205 708 3.45

Samsung 2218 3409 1.54
PDNConnectivityReject (NAS)

MediaTek
- - -

205 708 3.45

Samsung 2218 3409 1.54
PDNDisconnectReject (NAS)

MediaTek
- - -

205 708 3.45

Samsung 2281 5458 2.41
Average

MediaTek 203 1137 5.54



Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

Existing techniques for detecting bugs in the baseband
firmware are either too shallow (fuzzing) or too time-
consuming (Over the air). To bridge this gap, this paper
presents BaseBridge, an approach to emulate baseband be-
havior to detect bugs. Two key advantages of Basebridge
is: 1) State extraction and 2) Dynamic memory restoring.
BaseBridge transfers the state of the physical devices that
are already connected to a cellular network and continues
emulation from that state. This approach is used to fuzz the
LTE protocol stack for the MediaTek and Samsung devices.
Results presented in the paper show significant improvement
in coverage rates achieved on the targets.

C.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability

C.3. Reasons for Acceptance

1) BaseBridge advances the state of the art in base-
band emulation while reducing the need for manual
intervention.

2) Achieving more coverage and consequently trigger-
ing new vulnerabilities


	Introduction
	Background
	Cellular Protocol Stacks
	Modem firmware

	Motivation
	BaseBridge
	Extracting State from Physical Devices
	Dynamic Memory Restoring

	Implementation
	Implementation Details
	Performance Optimizations

	Evaluation
	Qualitative Evaluation
	Test Messages
	Conformance Tests

	Fuzz Testing with BaseBridge
	Discovered Vulnerabilities
	Over-The-Air reproduction


	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Additional Test Results
	Appendix B: Additional Vulnerability Details
	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance


