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Abstract—Fuzzing has proven to be a highly effective approach
to uncover software bugs over the past decade. After AFL pop-
ularized the groundbreaking concept of lightweight coverage
feedback, the field of fuzzing has seen a vast amount of scien-
tific work proposing new techniques, improving methodological
aspects of existing strategies, or porting existing methods to
new domains. All such work must demonstrate its merit by
showing its applicability to a problem, measuring its perfor-
mance, and often showing its superiority over existing works in
a thorough, empirical evaluation. Yet, fuzzing is highly sensitive
to its target, environment, and circumstances, e. g., randomness
in the testing process. After all, relying on randomness is one
of the core principles of fuzzing, governing many aspects of
a fuzzer’s behavior. Combined with the often highly difficult
to control environment, the reproducibility of experiments is a
crucial concern and requires a prudent evaluation setup. To
address these threats to validity, several works, most notably
Evaluating Fuzz Testing by Klees et al., have outlined how
a carefully designed evaluation setup should be implemented,
but it remains unknown to what extent their recommendations
have been adopted in practice.

In this work, we systematically analyze the evaluation
of 150 fuzzing papers published at the top venues between
2018 and 2023. We study how existing guidelines are imple-
mented and observe potential shortcomings and pitfalls. We
find a surprising disregard of the existing guidelines regarding
statistical tests and systematic errors in fuzzing evaluations.
For example, when investigating reported bugs, we find that
the search for vulnerabilities in real-world software leads to
authors requesting and receiving CVEs of questionable quality.
Extending our literature analysis to the practical domain, we
attempt to reproduce claims of eight fuzzing papers. These
case studies allow us to assess the practical reproducibility
of fuzzing research and identify archetypal pitfalls in the
evaluation design. Unfortunately, our reproduced results reveal
several deficiencies in the studied papers, and we are unable to
fully support and reproduce the respective claims. To help the
field of fuzzing move toward a scientifically reproducible eval-
uation strategy, we propose updated guidelines for conducting
a fuzzing evaluation that future work should follow.

1. Introduction

Fuzzing, a portmanteau of “fuzz testing”, has gained
much attention in recent years, and the method has proven
to be highly successful in uncovering many types of faults
in software systems. Companies such as Meta, Google, and
Oracle have invested significant resources in this technology
and use it to test their products. Large software projects such
as web browsers or the Linux kernel incorporate fuzzing
into their development cycle, and Google is running an
extensive and continuous fuzzing campaign for more than
1, 200 open-source projects via OSS-Fuzz [62]. Beyond the
wide acceptance in the industry, a large number of academic
papers have proposed numerous improvements and novel
techniques to enhance fuzzing further. More specifically, we
found that, over the past six years, more than 280 papers on
fuzzing have been published in the top computer security
and software engineering venues.

A cornerstone of fuzzing research, and science in gen-
eral, is that other researchers can critically assess the cor-
rectness of scientific results. To this end, the research results
must be reproducible, meaning that another group should be
able to obtain the same results using the same experimental
setup, often by using a research artifact provided by the au-
thors [8]. Reproducibility is paramount for other researchers
to understand, trust, and build on the research results.

To enable high-quality research and provide a common
foundation for evaluating fuzzing methods, several works
describe how newly proposed fuzzing approaches should be
evaluated. In 2018, the first and most influential paper de-
scribing a reproducible evaluation design was published by
Klees et al. [88]. It describes guidelines to advise researchers
on how fuzzing research should evaluate their respective
contributions. For example, a crucial insight introduced by
Klees et al. is the repetition of experiments to account for
the inherent randomness of the fuzzing process. Although
Klees et al. recommend “a sufficient number of trials” and
use 30 trials in their own experiments, we found that in
practice, this recommendation is interpreted as anything
between three and 20 repetitions. Another guideline is to
confirm the fuzzers’ performance statistically; however, this
makes little sense with few repetitions and is often skipped.



In this work, we systematically review how the recom-
mendations for evaluating fuzzing methods are implemented
in practice and critically evaluate the reproducibility of
fuzzing research. We propose revised best practices for
evaluating fuzzing methods and point out pitfalls that we
have observed in practice. In other fields, such work has
had a significant impact on improving research from a
methodological point of view [1], [4], [46], [155].

We conduct a thorough literature review of 150 fuzzing
papers published in prestigious A∗ venues—as ranked by
CORE2023 [128]—between 2018 and 2023. While we pri-
marily focus on computer security venues, namely IEEE
Symposium on Security and Privacy (S&P), USENIX Secu-
rity Symposium (USENIX), ACM Conference on Computer
and Communications Security (CCS), and ISOC Network
and Distributed System Security (NDSS) Symposium, we
also examine three software engineering venues: IEEE/ACM
International Conference on Automated Software Engineer-
ing (ASE), ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE), and International Confer-
ence on Software Engineering (ICSE). For all papers, we:
(i) systematically analyze how evaluations are conducted
(in terms of metrics, targets, baselines, reported bugs, etc.),
(ii) check whether common fuzzing guidelines (as outlined
by Klees et al. [88] or embodied in implicit community wis-
dom, e. g., “do not use artificial bug datasets”) are followed,
and (iii) investigate potential flaws threatening the validity
of the respective evaluation.

Following our literature analysis, we present eight case
studies of fuzzing papers across different fields and attempt
to reproduce (parts of) their evaluation. For each case study,
we discuss any shortcomings we have identified because
they illustrate potential pitfalls of which researchers should
be aware. Note that these case studies are not intended
to point fingers or criticize any particular work. Instead,
we aim to highlight potential challenges that can affect the
outcome of a research paper and explore what aspects need
to be considered when designing the evaluation of a fuzzing
method. Based on the findings of our literature review and
case studies, we propose best practices for evaluating future
fuzzing methods to enable reproducible research.

In summary, we make the following key contributions:
• We conduct a systematic literature survey of 150 papers

published in the past six years at top venues to assess
how fuzzing methods are typically evaluated.

• We attempt to reproduce eight papers to assess the
practical aspect of fuzzing evaluations. In doing so,
we identify several obstacles that illustrate (sometimes
subtle) shortcomings of evaluating fuzzing methods.

• Based on our lessons learned, we provide revised rec-
ommendations and best practices for future fuzzing
evaluations.

Supplementary material for this work is available online
at https://github.com/fuzz-evaluator/, including our repro-
duction artifacts and recommended best practices for future
work (see https://github.com/fuzz-evaluator/guidelines).

2. Fuzzing Evaluation Guidelines

We first provide a brief overview of fuzzing before
describing several generally accepted best practices that
guide a typical fuzzing evaluation.

2.1. Background on Fuzzing

Fuzzing, also referred to as fuzz testing, is a dynamic
testing technique with the goal of uncovering bugs in
systems. This typically happens by mutating some initial
input(s) to the system or by deriving inputs from input spec-
ifications such as grammars. While processing the provided
input, the system under test is monitored for interesting
behavior. Beyond easily observable faults, such as program
crashes, fuzzers can use more sophisticated bug oracles,
such as sanitizers or differential testing. Moreover, modern
fuzzers often use lightweight instrumentation to receive
coverage feedback, allowing them to track inputs that ex-
ecuted previously unseen edges. A comprehensive overview
of various fuzzing techniques can be found in the Fuzzing
Book [178], and several surveys present a comprehensive
overview of this topic [112], [193] or open challenges in
this domain [14]. Most fuzzing research proposes an im-
provement by way of new techniques, new components, or
entirely new fuzzers—few works focus on the theory behind
fuzzing [20], [21], [23], [107].

A fundamental principle of all fuzzers is the inherent
inclusion of randomness into the testing process. Starting
from the scheduling order of the process, through the input
and the mutations applied to it, to the fuzzing environment
(including functions such as getpid, time, or rand, or
shared resources such as the filesystem), there are numerous
sources of randomness that make deterministic and repro-
ducible execution challenging.

2.2. Guidelines of Evaluating Fuzz Testing

The randomized nature of fuzzing needs to be taken into
account during the evaluation, which leads to challenges
with reproducibility of research results in practice. Hence,
the seminal paper by Klees et al. [88] outlined several
guidelines on how a proper fuzzing evaluation should be
conducted. For a reproducible and fair evaluation, they
propose the following recommendations:
Recommendation 1 – Baseline: A comparison with a rel-
evant and reasonable baseline is imperative to show what
improvement a particular fuzzer provides.
Recommendation 2 – Targets: A relevant sample of targets
to compare against is necessary. This includes benchmark
programs with known bugs that can be used as a ground
truth to measure bug detection capabilities.
Recommendation 3 – Setup & Parameters: Due to the in-
herent randomness of fuzzing, individual runs with the same
configuration can yield significantly different outcomes. To
address this problem, Klees et al. propose repeating the
experiment multiple times. Similarly, fuzzing performance
may vary within a single run, so short runtimes are not
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appropriate for extrapolating the behavior of a fuzzer over
longer times. They propose 24 hours as a reasonable fuzzer
runtime and recommend plotting the performance over time.
Seed sets must be well documented and carefully selected;
ideally, various sets, including the empty or uninformed
seed, are tested.
Recommendation 4 – Evaluation Metrics: Ideally, fuzzing
evaluations should not be based on proxy metrics such as
code coverage alone, but on a fuzzer’s ability to find bugs,
i. e., the goal for which it was designed. In particular, an
evaluation should not rely on heuristics such as AFL’s cover-
age profiles or stack hashing. Complementing the evaluation
on bug detection, Klees et al. recommend code coverage in
terms of basic blocks or edges as secondary metric.
Recommendation 5 – Statistical Evaluation: Finally, the
fuzzing evaluation should undergo statistical evaluation to
rule out that the observed behavior is by mere chance. This
requires a sufficient number of trials (Klees et al. themselves
use 30); then, a statistical test such as the Mann-Whitney
U-test or bootstrap-based methods should be used to test the
null hypothesis that the new method exhibits no difference
compared to a reasonable baseline.

2.3. Guidelines of FuzzBench

FuzzBench [118], a benchmarking suite for general-
purpose fuzzer evaluation developed by Google, provides
several target programs and aims to provide a standard-
ized setup for fair comparison of fuzzers. FuzzBench is
the successor to the Google Fuzzer Test Suite (FTS) [63].
During their extensive evaluation, the authors made two key
observations that can serve as a guideline for future fuzzing
research. First, the performance of a fuzzer varies signif-
icantly depending on the number of initial seeds; running
without seeds allows for studying the difference when only
a particular fuzzer can solve some comparisons/branches.
Second, using a saturated corpus for fuzzing is not rec-
ommended, as fuzzers are barely capable of augmenting it.
Even though this is common in practice, it is not well suited
to discern or measure the performance of fuzzers.

2.4. Guidelines of On the Reliability of Coverage

More recently, Böhme et al. [23] made a number of
recommendations based on their evaluation of the reliability
of coverage. In particular, they recommend to use at least ten
representative programs, each tested at least ten times for at
least 12 hours (preferably, each value should be doubled).
The selected programs should be real-world programs, and
a bug evaluation should be done on real-world bugs. In
addition to bugs, code coverage should also be evaluated—
both using established metrics. In particular, fuzzer-specific
measures such as AFL’s unique paths should be avoided.
For comparison, authors should choose a suitable baseline,
such as the fuzzer on top of which the new technique is
implemented. Authors should consider splitting benchmarks
into a training and validation set to avoid overfitting. To

confirm evaluation results, authors must measure signifi-
cance and effect size using established techniques. They
should discuss threats to the validity of their evaluation and
how they mitigated them. Finally, authors should carefully
document their setup and publish evaluation artifacts on
long-term stable platforms such as Zenodo.

2.5. Fuzzing Benchmarks

Over the years, several standardized benchmarks and
platforms to conduct fair and comparable fuzzing eval-
uations have been proposed, e. g., Google’s Fuzzer-Test-
Suite [63] (2016; superseded by FuzzBench), LAVA-
M [51] (2016), CGC [45] (2018), Magma [70] (2020),
FuzzBench [118] (2020), Unibench [99] (2021), Pro-
FuzzBench [123] (2021), and RevBugBench [183] (2022).

These benchmark platforms aim to measure the per-
formance of general-purpose fuzzing, except for Pro-
FuzzBench, which focuses on stateful protocol fuzzing.
Overall, we can distinguish between benchmarks focusing
on the comparison of achieved coverage (Google’s Fuzzer-
Test-Suite, Unibench, FuzzBench, and ProFuzzBench) and
those focusing on the bug-finding capabilities of the fuzzing
technique (LAVA-M, CGC, Magma, and RevBugBench).
In the latter category, some utilize artificial bug injection
(LAVA-M and CGC), make efforts to port actual vulnerabil-
ities to the latest version of a program (Magma), or to revert
fixes (RevBugBench). Artificial bug injection methods often
introduce shallow bugs that are amenable to fuzzers, and are
generally no longer recommended for an evaluation [18],
[118], [162], [183].

3. Literature Analysis

With these guidelines and benchmarks in mind, we now
study their adoption to better understand what best practices
are used in fuzzing research. To this end, we perform a
comprehensive literature survey of recent fuzzing papers.

3.1. Method

We examine all fuzzing papers published at the top
computer security and software engineering conferences
between 2018 and 20231. We include a paper in our analysis
if its focus is on fuzzing, e. g., it proposes a new method or
extensively evaluates existing ones. In contrast, we exclude
papers using fuzzers as a means to support their primary
focus, e. g., solely to generate some diverse inputs. We
identify 289 candidate papers for which we collect metadata
about the underlying evaluation method, including whether
the paper successfully participated in an artifact evaluation
process. We then randomly select 52% (150) from these 289
papers and manually review them, i. e., study the design and
evaluation of the work in detail. Table 1 shows an overview
of analyzed papers.

1. For 2023, ASE and FSE have not published the papers at the time of
writing. We therefore work with available preprints.



TABLE 1. OVERVIEW OF ANALYZED PAPERS.

Year Venue Papers Studied

2023

ASE∗ [159], [76], [105] 3/7
FSE∗ [166] 1/6
ICSE [82], [80], [165], [67], [92] 5/11
CCS [182], [47], [32], [116] 4/9
NDSS [78], [65], [17] 3/4
S&P [108], [19], [104] 3/9

USENIX [149], [109], [186], [143], [41], [111],
[153], [2], [10], [161], [134], [96] 12/29

2022

ASE [58], [174] 2/4
FSE [66], [189] 2/6
ICSE [97], [124], [89], [163], [64], [115], [151], [52] 8/17
CCS [83], [12], [57], [144], [37], [29], [191] 7/8
NDSS [84], [169], [180] 3/6
S&P [74], [147], [102], [28], [100] 5/9

USENIX [148], [190], [183], [140], [120],
[43], [185], [9], [27] 9/19

2021

ASE [106], [81] 2/6
FSE [118], [181] 2/4
ICSE [16], [157], [131] 3/6
CCS [61], [192], [122], [54], [72], [33] 6/13
NDSS [49], [136], [86] 3/6
S&P [117], [40] 2/7
USENIX [91], [142], [55], [139] 4/13

2020

ASE [125], [188] 2/4
FSE [22], [152], [145] 3/7
ICSE [113], [164], [167], [158] 4/6
CCS [171] 1/2
NDSS [87], [141], [162] 3/4
S&P [132], [6], [168], [75], [48], [34] 6/7

USENIX [150], [175], [137], [77], [59], [42],
[24], [93], [53], [194], [135] 11/19

2019

ASE – 0/0
FSE [98] 1/4
ICSE [36], [126], [39], [172], [160] 5/7
CCS [38], [31] 2/3
NDSS [69], [5], [7] 3/4
S&P [121], [170], [146], [173], [79] 5/5
USENIX [68], [35], [187], [85], [13], [110] 6/6

2018

ASE [95] 1/2
FSE – 0/0
ICSE – 0/0
CCS [25] 1/2
NDSS [26], [119] 2/2
S&P [60], [133] 2/3
USENIX [154], [129], [176] 3/3

total #papers analyzed 150/289
∗ limited to available preprints

We investigate whether the fuzzing evaluation guidelines
outlined in Section 2 are followed or whether an evaluation
deviates from them. We want to stress that there may
be good reasons to deviate from these guidelines, making
a manual review and judgment on a case-by-case basis
mandatory. We also study whether the evaluations performed
expose flaws that future fuzzing papers could avoid.

3.2. Results

We study the papers regarding their reproducibility, tar-
gets, fuzzers, evaluation setup in terms of resources, com-
mon metrics, and statistical evaluation.

3.2.1. Reproducibility. A crucial aspect of verifying and
advancing science is the ability to reproduce existing re-
search results. When examining the metadata we collected
for all 289 fuzzing papers, we find that 74% (214) publish

the code of their technique, while 23% (66) do not share
their code. Some do not contribute new code, upstreamed
their code, or have not yet released the code (applies to FSE,
which will take place after time of writing). Regarding other
data (excluding code), we find that 11% (31) share data,
20 of which publish data as a substitute because they do
not share their code or have no code to share. All software
engineering conferences (ASE, FSE, and ICSE), USENIX
Security, and CCS (since 2023) offer an artifact evaluation
process where independent reviewers assess the published
research artifact (for 2023, ASE and FSE have not yet
published this data). Our analysis found that 36% (103) of
the papers did not have access to such an artifact evaluation;
37% (107) had access but opted to not participate or failed
to receive any badge. Only 23% (66) of the papers have
one or more badges. Of these, 64 are considered available
and 63 functional or reusable, a crucial requirement for
reproduction. USENIX Security and CCS offer to reproduce
the results of a paper, which only 16 out of 57 eligible
papers achieved. We emphasize that artifact evaluation has
been introduced only in recent years, but participation is
rising. CCS offered artifact evaluation for the first time in
2023, further supporting this trend.

With 74%, a majority of works releases their code.
Despite being relatively new, 60% of the papers already
had access to artifact evaluation, with adoption lagging
behind at 23% of papers that obtained a badge.

3.2.2. Targets under Test. To showcase the strengths of
an approach, a suitable set of targets is required. Looking
at the distribution of used targets (excluding datasets) in
Table 2, we find that they are strongly biased towards byte-
oriented file formats, especially binutils. On average, fuzzing
papers evaluate on 8.9 targets. In summary, we found 753
different targets used across all studied papers; of these, 76%
(576) were evaluated in only one paper. In addition to real-
world targets, a common way of reproducibly measuring
fuzzer performance is using benchmarks. Figure 1 shows
how benchmarks have been adopted in the past years. In
total, 61% (91) of the papers use no benchmark, 17% (26)
use LAVA-M [51], 10% (15) use FuzzBench [118], 8% (12)
use Google’s Fuzzer Test Suite (FTS) [63], 5% (8) DARPA’s
CGC binaries (CGC) [45], 4% (6) rely on Magma [70],
and 1% (2) build on Unibench [99] for benchmarking pur-
poses. Despite its success, LAVA-M is nowadays considered
flawed because it artificially injects vulnerabilities into a
given target program that are easy for a fuzzer to find but
do not correspond to real bugs [18], [118], [162], [183].
More recent works using LAVA-M often do so only for
comparability reasons [78], [82]. Similar to LAVA-M, CGC
is widely considered outdated and inadequate.

Real-world targets are often limited to binary input-
affine programs, while benchmarks are not used by the
majority of papers. Benchmarks with artificial vulner-
abilities are still used.



TABLE 2. TARGETS FUZZED IN FIVE OR MORE ANALYZED PAPERS
(EXCLUDING BENCHMARKS). SOME PAPERS REPORT GENERICALLY TO

EVALUATE ON BINUTILS, WHILE OTHERS SPECIFY EXACT TARGETS,
SUCH THAT NUMBERS IN PRACTICE MAY DIFFER SLIGHTLY.

#Uses Target

25 objdump, readelf
20 nm, tcpdump
19 libpng
17 libtiff
13 cxxfilt, jhead, libjpeg
12 libxml2
11 nasm
10 jasper, libming, openssl, size
9 file, ImageMagick, mjs, tiff2pdf
8 djpeg, exiv2, JavaScriptCore, libarchive, SQLite, v8, xmllint
7 ChakraCore, ffmpeg, harfbuzz
6 binutils, lcms, lrzip, mupdf, OpenJPEG, SpiderMonkey

5 bento, bsdtar, catdoc, cflow, curl, freetype2, GraphicMagick,
json, pcre2, proj4, strip, tiff2ps, yara, zlib

3.2.3. Evaluation against State of the Art. Comparison
with a strong set of existing work helps to demonstrate
that a new method is particularly suited to solve a specific
problem. Yet, only a few techniques published in the past
few years have been broadly incorporated in follow-up
work. Instead, the most famous fuzzers extended with new
techniques are AFL [177] with 30% (45), AFL++ [56] with
6% (9), libFuzzer [101] with 5% (7), and syzkaller [50] with
4% (6). Interestingly, all of these tools are non-academic
works; only for AFL++ a peer-reviewed paper has been
published [56]. Contrasting this number, 33% (49) of the
proposed tools are not based on any existing tool.

When looking at the fuzzers chosen as baselines for
comparison, we find that AFL is compared against by 35%
(53) of studies, followed by QSym [176] with 15% (23),
AFLFast [15] with 14% (21), Angora [30] with 13% (20),
FairFuzz [95] with 8% (12), and AFL++ with 9% (14).
From the 150 papers we analyzed, only QSym (2018),
FairFuzz (2018), and MOpt [110] (2019) have been chosen
by more than five follow-up works for comparison. More
recently, only Fuzzilli [65] (published 2023, open-sourced
early 2019) was used by multiple works for their evaluation,
even before the paper was published. This does not account
for techniques replicated in AFL++ or LibAFL [57], which
reimplement many successful techniques proposed [7], [15],
[90], [110]. On average, a fuzzing paper evaluates against
3.2 other fuzzers.

Analyzing whether papers omit comparing against a
relevant fuzzer in their evaluation, we find that 20% (30) of
the works ignore at least one relevant state-of-the-art method
and 3% (4) even omit comparing against their baseline, i. e.,
the tool on which they base their own fuzzer.

45% of fuzzing research builds on top of non-academic
fuzzers, 33% build a new tool. 23% percent of fuzzing
evaluations fail to compare against relevant state-of-
the-art fuzzers or their own baseline.
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Figure 1. Benchmark usage over the years. The numbers in brackets
represent the number of papers analyzed for the respective year. Note that
some papers use multiple benchmarks, hence the numbers do not add up.

3.2.4. Evaluation Setup. With respect to the evaluation
setup, we analyze the runtime, the number of CPU cores
assigned, whether all resources were allocated fairly, and
the seeds used for the experiments.

Runtime. Reviewing the experiment setup used
across fuzzing evaluations, we find that the majority of
papers uses a runtime of 24h, more precisely 56% (84) of
the papers run at least one experiment for 24 hours. As
Figure 2 outlines, only 27% (40) of the works use a runtime
of less than 23 hours, while 29% (44) use an even higher
runtime. 5% (8) do not specify their runtime or have no own
experiments measuring time.

CPU cores. In terms of CPU cores assigned to
fuzzers, we find an inconsistent picture, with a significantly
varying number of CPU cores used. The most common
result was that 25% (38) of the papers did not specify how
many CPU cores they used, 27% (40) used one core, and
8% (12) used two cores.

Fair computing resources. When checking whether
the available computing resources were allocated fairly
(e. g., the same number of cores were allocated to each
fuzzer and they were run for the same amount of time),
we find that this is the case for 74% (111) of the works.
For 15% (23), we could not infer this information from the
description in the paper, and 5% (8) did not evaluate other
fuzzers or did not conduct any experiments where this was
an issue. Crucially, 5% (8) unfairly allocate resources, giving

#P
ap

er
s

0
2
4
6
8

10
12
14

C
D

F

100%

80%

60%

40%

20%

0%
<1 21 3 4 5 6 8 10 12 23 24 33 48 50 54 60 72 >72

Runtime [hours]
34

16
18
82
84
86

Figure 2. Distribution of runtimes used in practice and cumulative distri-
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less than 23 hours. 26 papers use multiple, different runtimes; we include
all in these cases.



one fuzzer an advantage over another. For these 8, we found
one benign case in which an existing method was given
more resources, one case in which the number of executions
was fairly distributed rather than the runtime (thereby giving
slow fuzzers an advantage), two cases in which a different
number of cores was used (in one case, giving the new
fuzzer twice the cores than others), and four cases where the
new approach was allowed some preprocessing time, e. g.,
for some static analysis pass or seed preprocessing, before it
was then allotted the same time as all other tools, effectively
giving it more computation time. Unfortunately, the authors
rarely explain their motivation for doing so, nor do they
consider consequences for the evaluation. Also, our analysis
does not address manual work, which may be distributed
unfairly between different fuzzers, for example, giving one
fuzzer a fine-tuned configuration that performs better.

Initial seeds. Another crucial factor determining a
fuzzer’s performance is the set of initial seeds [73], [88]. We
studied if the type of seeds is specified and if information
on concrete seed files is available. Out of the 150 papers,
11% (16) require no seeds, 25% (38) use uninformed or
empty seeds, 20% (30) use informed seeds, 16% (24) use
seeds provided by the project as test cases or those that are
shipped with a benchmark, and 3% (5) use multiple types
of seed sets, while 25% (37) do not specify at all what
type of seeds are used, making a reproduction challenging.
Regarding concrete details, we find that 50% (75) of the
papers fail to disclose what seeds they use, compared to
39% (59) that outline their seeds. A further pitfall potentially
threatening an evaluation’s validity is the fair distribution of
the same seeds to all fuzzers. While this is the case in 46%
(69) of the studied papers, in 30% (45) of the works this
does not become clear, and 5% (8) even use diverging seed
sets. Three of these cases arise due to the fuzzer design or
other fuzzers lacking the capability to process a particular
type of input. We stress that this may be valid, for example,
when a fuzzer used for comparison needs a larger seed set
than the proposed fuzzer, yet giving a fuzzer a different set
of seeds requires special attention and documentation.

We find that 5% of the papers allocate computing
resources unfairly, and 5% use different seed sets.

3.2.5. Evaluation Metrics. While many different metrics
exist, often specific to the particular technique introduced,
a small number of metrics has found widespread adoption:
77% (115) of the papers use some sort of code coverage,
and 71% (107) use the (re-)discovery of bugs as a metric to
compare fuzzers. The third most widespread metric, Time-
To-Exposure (TTE), is used by 13% (20) of the papers,
mainly from the directed fuzzing domain.

Code Coverage. Code coverage comes in different
forms; the most popular are the following: 19% (29) of
the papers use branch coverage, 17% (25) employ edge
coverage, 13% (19) rely on basic block coverage, and 5%
(8) use line coverage on the source code level. Furthermore,
11% (17) use some notion of paths to measure coverage. We
stress this metric is unreliable without a definition of what

the paper considers a path. Differences exist, for example,
between actual program paths and AFL’s path metric, re-
quiring any paper to specify what they consider a path for
their work. Beyond the type of coverage, the process of
measuring coverage is also prone to errors, and the concrete
choice of measurement is often not documented. In total, we
find that 45% (67) of the works lack a clear definition or
explanation of how they measure coverage, whereas 32%
(48) document this (the remaining papers do not measure
coverage). For example, measuring coverage using a binary
with instrumentation that not all fuzzers had access to during
the fuzzing campaign gives some fuzzers an advantage. Sim-
ilarly, when measuring coverage on a bitmap with collisions,
the reported coverage is up to 9% smaller [103] than the true
one. This may cause problems when a different bitmap size
was used during fuzzing, as the inputs saved by a fuzzer
may no longer trigger the new coverage on the bitmap with
collisions. A further pitfall affects emulation-based fuzzing,
especially when using QEMU [11]. We observed that papers
often provide no clear distinction between translated blocks
as presented by the emulator and actual basic blocks for the
target binary. We found that in at least one case this led
to overcounting the reached coverage, as translated blocks
were mistaken for basic blocks.

Known Bugs. As research from Klees et al. [88]
as well as Böhme et al. [23] points out, coverage may not
be an accurate proxy for bug finding, even though a strong
correlation exists. Ultimately, a fuzzer’s goal is finding bugs,
making the evaluation of whether it can find known or
unknown vulnerabilities an excellent experiment. Known
bugs are a good way of measuring a fuzzer’s performance,
yet it is difficult to find suitable bugs outside well-designed
benchmarks, such as Magma [70] or RevBugBench [183].

New Bugs / CVEs. Another commonly used ap-
proach is the capability of finding previously unknown bugs.
Ethical handling requires researchers to responsibly disclose
these bugs to the vendors or maintainers. Both sides can
additionally request a CVE that serves as a unique identifier
for the found vulnerability. In practice, CVEs have become
a commonly used metric to assess whether a fuzzer can
find bugs in real-world software, presumably showing its
impact. Of the 150 analyzed papers, 59 claim one or more
CVEs (9.7 on average, 662 in total). Given the implicit
expectation of submissions to have a real-world impact, the
authors often try to obtain as many CVEs as possible. We
randomly selected 35 of these papers [9], [19], [33], [35],
[36], [40], [41], [47], [49], [52], [72], [75], [77], [82], [93],
[96], [97], [105], [106], [109], [110], [115], [120], [129],
[130], [139], [146], [160], [164], [174], [175], [184]–[186],
[189] and analyze the 339 CVEs they claim (51% of all
CVEs claimed across the 59 papers).

As Figure 3 shows, surprisingly, only 43% (145) of the
CVEs are valid (i. e., neither formally disputed, reserved,
nor ignored or rejected by the project maintainers) and have
been fixed (or at least acknowledged). 26% (88) of the
CVEs were still marked as RESERVED, preventing us from
viewing and analyzing them (all of them were assigned be-
fore 2023). For such CVEs and depending on the assigning
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Figure 3. Outcome of 339 CVEs that were reported across 35 papers. Only
43% of the CVEs have been acknowledged by the developers. Pending
public disclosure, information on CVEs in the Reserved state is withhold.

authority (called CNA), authors usually have to follow up
with the CNA to unblind them once the vulnerabilities are
publicly disclosed. Our analysis found 11% (37) of invalid
CVEs, including both CVEs that were formally disputed
or rejected as duplicates by the assigning CNA, such as
MITRE, and such CVEs where the maintainer of the project
considered the report to be invalid or not a bug. In one case,
the CVE ID specified in the paper did not match the target,
leading us to believe the authors mistakenly reported the
wrong number. Three CVEs were claimed by more than one
paper, raising questions about who identified and reported
them initially. A larger number, 20% (69) of the CVEs, have
been ignored by the maintainers of the respective projects.
Investigating this, we found that in 14 cases, the projects
were abandoned several years before the bug was found,
or the projects had not found widespread adoption (with a
single digit number of stars and forks on GitHub). In these
cases, the perceived need to report many vulnerabilities in a
paper appears to be the driving factor in requesting a CVE
for such bugs.

Studying why some bug reports were ignored while
other bugs were fixed, we found that maintainers tend to
ignore issues such as memory leaks in client-side software,
for example, an assembler. The reasoning appears to be
that the program does not run continuously and is not
exposed to external attackers. Many of the ignored CVEs
were segmentation faults in mjs or yasm. The bug tracker
of mjs appears to be flooded with similar fuzzer-generated
bug reports, while the project has not received an update
for two years. Similarly, the maintainer of yasm has moved
to other projects, only occasionally merging pull requests.
As security researchers usually only drop the bug details
without proposing a patch, these issues remain unfixed.
While studying papers, we noticed that several papers claim
a specific number of CVEs credited to their work but do
not specify any identifier, making it difficult to track them.
Interestingly, 18 of the 35 papers report only CVEs that all
have been fixed, accounting for 67 of the CVEs.

In summary, the need to show a fuzzer’s real-world im-
pact results in a large number of unwarranted CVEs, leading
to a situation where only 42% (143) of the 339 assigned
CVEs are valid and have been fixed, while many are what
one maintainer referred to as “fuzzer fake CVEs” [114]. Cre-
ating such invalid vulnerabilities causes multiple problems:
It unnecessarily alerts people, reduces maintainer acceptance
of fuzzer findings, and raises the expectations for subsequent
papers to find a similar number of vulnerabilities.

20% of the CVEs have been ignored and remain
unfixed, 11% are invalid. 26% are reserved, eluding
analysis.

3.2.6. Statistical Evaluation. To confirm the results ob-
tained in the evaluation, a statistical evaluation is highly
recommended [88], [127] to detect whether the observed
difference is significant or by chance. In practice, the most
common approach is to compare the final coverage values
achieved by different fuzzers across multiple runs.

In general, a frequently used test for the comparison of
the means of two sample sets—such as the coverage values
of two fuzzers operating on the same target—is the t-test.
While powerful for the detection of differences, it requires
strong assumptions. In particular, the samples have to be
approximately normally distributed. This is particularly true
for small sample sizes, such as n ≈ 10. To avoid these
strong assumptions, the Mann-Whitney or the similar U-test
(called Mann-Whitney U-test to emphasize their equivalence
subsequently [138]) is often used. Here, the two samples are
assumed to have the same unknown distribution except for
a potential shift. The test statistics for the Mann-Whitney
U-test is mainly based on the sum of ranks of the two
samples in the joint sample. This results in a test for the
difference of distribution medians, which is rather robust
w.r.t. assumptions that do not hold. For a more detailed
discussion of such tests, we refer to Sachs’ work [138].

However, the Mann-Whitney U test can have low power,
especially for small sample sizes. Suppose, for example,
that we have two samples of three runs that achieved the
following coverage:

x = (1000, 1002, 1001), y = (1208, 1207, 1205)

As is easy to see, these samples are strongly separated, and
it is hard to explain these results assuming the similarity
of the samples’ distributions. Yet, the Mann-Whitney U
test will not reject the hypothesis of no difference for a
significance level α = 5%. Even worse, it will never reject
samples of this size, since it only uses the ordering of
the observations, and the probability of two samples of
size 3 generated from the same distribution to show this
pattern of full separation on the real line has a probability
> 5%. In other words, we cannot use the Mann-Whitney U
test to statistically confirm that the difference between two
fuzzers is significant if only three trials have been conducted.
Such situations frequently arise if sample sizes are small
or observations cannot be approximately described by a
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Figure 4. Distribution of trials used in practice and cumulative distribution
function (CDF). 8 papers use a different number of trials for different
experiments; we include all numbers in this case. Further 21 papers fail to
specify the number of trials.

parametric distribution that depends only on few parameters,
such as a normal distribution.

In summary, a statistical evaluation should use a suffi-
cient number of trials, ideally 10 or more, and use a robust
test. Studying the trials used in the 150 analyzed papers,
we find that 1, 3, 5, 10, or 20 trials are the most common
repetitions chosen. Figure 4 provides a detailed distribution.
Overall, 55% (83) of the papers use fewer than 10 trials in
at least one experiment (8 papers use a different number of
trials throughout their paper). Even worse, 63% (94) conduct
no statistical test at all. Only 37% (55) of the papers run
a Mann-Whitney U test to measure statistical significance,
which—paired with few trials—risks that it may never reject
the hypothesis. We find that 15% (22) of the analyzed
papers conduct a Mann-Whitney U-test while having five
or less trials. One work reports p-values without specifying
how they have been derived. Interestingly, we found no
other tests, such as bootstrap-based ones, being used, despite
being recommended by Klees et al. [88]. Beyond measuring
statistical significance, it is recommended to quantify the
effect size, for example, using Vargha and Delaney’s Â12

test [156]. Yet, we find that only 10% (15) of studies conduct
this test; 2% (3) rely on other means to specify the effect
size, leaving us with 88% (132) not using any test to measure
the effect size.

Beyond the use of statistical tests, we find that 73%
(109) of the papers provide no measure of uncertainty,
for example, intervals in coverage plots or the standard
deviation. This makes it difficult to assess the robustness
of reported results, especially considering the inherent ran-
domness in fuzzing runs.

63% of the works use no statistical test to assess their
results, and 15% use too few trials to achieve robust
outcomes. 73% provide no measure of uncertainty.

3.2.7. Threats to Validity. Scientific works often use a
dedicated section on threats to validity to enumerate, reflect,
and address any issue that could potentially render their
evaluation invalid. However, when studying how many of
the 150 analyzed papers provide such a section, we find
that only a minority of 20% (30) of the papers does so.

4. Artifact Evaluation

Beyond studying the evaluation outlined and described
in the papers, we select eight papers and study their artifacts.
This allows us to assess the practical reproducibility of
fuzzing research and provide recommendations grounded in
practice. As selection criteria, we pick four recent papers
from 2023 and focus on security venues featuring an artifact
evaluation. In our experience, papers undergoing an artifact
evaluation process provide enhanced documentation and
significantly ease the process of setting up a particular tool.
However, we test papers that have not undergone artifact
evaluation as well to gain a more complete picture. Note
that all papers we chose as case studies had attracted our
attention during the initial reading for the literature survey
in terms of evaluation setup or execution.

In the following, we discuss our lessons learned, pit-
falls, and how fuzzing artifacts can be further improved to
enhance their reproducibility. Again, we emphasize that it is
not our intention to point fingers at specific works but rather
to highlight potential pitfalls that researchers in this area
should be aware of. More information on all case studies is
available in dedicated reproduction repositories on GitHub:
https://github.com/fuzz-evaluator/. Despite our best efforts,
our reproduction may contain errors. If we become aware of
any, we will update the respective reproduction repositories
on GitHub.

Author Contact. We have anonymously contacted
the authors of all case studies and brought up our findings
for discussion with them, asking for their help, confirmation,
or clarification. Five groups have responded to our mails.
Where desired by the authors, we publish a statement of
them alongside our reproduction artifact.

Setup. All our experiments were performed on two
servers running Ubuntu 22.04 with 196 GB RAM, one with
an Intel Xeon Gold 6230R CPU with 52 cores at 2.10GHz,
and the other with an Intel Xeon Gold 6230 CPU with 40
cores at 2.10GHz (for consistency, a case study was fully
run on one type of server or the other). We use the settings
provided by the original papers where sensible, otherwise
we run 10 trials for 24 hours each, restricting each fuzzer
to a single core.

4.1. Case Study: Artificial Runtime Environment
and Unique Crashes

Our first case study is MemLock [164], published at
ICSE’20, which proposes to use memory usage as additional
feedback. This way, the paper aims to identify resource
exhaustion bugs, such as stack exhaustion.

Artifact status. MemLock has undergone artifact
evaluation and received the available and reusable badges.
Our additional experiments can be found at https://github.
com/fuzz-evaluator/MemLock-Fuzz-eval.

Observations. After studying the paper and artifact,
we observe the following:

https://github.com/fuzz-evaluator/
https://github.com/fuzz-evaluator/MemLock-Fuzz-eval
https://github.com/fuzz-evaluator/MemLock-Fuzz-eval


1) According to the artifact but not documented in the
paper, the authors artificially alter the runtime envi-
ronment of one target and lower the maximum stack
size. Manually limiting the stack size makes it easier
to trigger stack overflow bugs, one of the declared goals
of the presented technique.

2) MemLock, similar to many other fuzzing papers, relies
on unique crashes as reported by AFL to draw con-
clusions on the fuzzer’s performance. This metric is
generally unreliable since a unique crash depends on
the set of exercised edges; it does not reflect the number
of actual bugs. Here, MemLock’s use of the call stack
depth as additional feedback may lead to an inflated
number of “unique” crashes per root cause.

3) To demonstrate practical impact, MemLock reports 26
CVEs. We found multiple cases among them where up
to five CVEs were requested and assigned for a single
bug report, to which none of the maintainers responded.

4) MemLock’s artifact is based on PerfFuzz [94] (itself
an AFL-derivative), but the paper suggests it is based
on AFL.

We design three experiments to analyze and reproduce
MemLock’s performance. For full details, we refer the in-
terested reader to our reproduction artifact.

Experiment 1: Artificial Runtime Limits. We first
study the impact of artificially lowering the stack size for
the target flex, which was not documented in the paper.
After recreating the setup and running the fuzzing campaign
with and without the artificial limit, we observe that Mem-
Lock finds the claimed crashes only with the artificially
lowered limit. While memory corruption bugs may warrant
discussing artificial scenarios, we believe memory exhaus-
tion created through artificial limits cannot be considered
realistic. In any case, we recommend documenting such
limits in the paper.

Experiment 2: Unique Crashes. We investigate
whether superiority claimed due to unique crashes persists
when examining the underlying bugs and root causes. Using
a developer patch and manual triaging, we identify the
underlying bugs for three evaluation targets and find that
AFL finds four bugs, while MemLock locates only three,
even though it finds significantly more unique crashes.

Experiment 3: Reported CVEs. When studying the
reported vulnerabilities, we noticed that six CVEs, CVE-
2020-36370 to CVE-2020-36375, refer to the same bug in
mjs. This bug was never acknowledged by the maintainers
of mjs. This pattern repeats for other groups of CVEs.

Lessons learned: Unique crashes are not a reliable
metric; instead, we suggest using (known) bugs. We
recommend not using artificial runtime environments
without good reason and, if done, documenting such
limits. We strongly recommend against the practice
of obtaining as many CVEs as possible. Real-world
impact should not be measured based on the number
of assigned CVEs.

4.2. Case Study: Exaggerated Vulnerabilities

For the next case study, we selected SoFi [72], published
at ACM CCS’21. This work aims to use a reflection-based
analysis to create a syntactically and semantically valid but
diverse set of seeds for fuzzing JavaScript engines.

Artifact status. Artifact evaluation was not available
for SoFi, but the authors released the source code via an
independent web page [71]. While trying to set up the
artifact, we noticed that crucial parts of the source code
were missing. The authors stated they would release the
missing pieces once the code is polished [71], but did not
react to our e-mails asking for access to the code. Without
a chance to reproduce the artifact, we solely studied the
paper, in particular the reported vulnerabilities summarized
in Table 2 of their paper, entitled “Summary of discovered
vulnerabilities” [72].

Observations. We find that all seven vulnerabilities
claimed in the actively used modern browser engines (i. e.,
v8, SpiderMonkey, and JavaScriptCore) are invalid and have
been rejected by the respective developers, six out of seven
even before the conference submission deadline. While SoFi
manages to find confirmed vulnerabilities in other programs,
we believe it is important to not oversell results by claiming
to have found vulnerabilities in browser engines, when in
fact they were not a bug at all. We assume that the bug report
IDs were blinded, as is common practice for submission,
such that the reviewers could not verify the validity of the
presumed vulnerabilities.

Lessons learned: We highly discourage marketing in-
valid bug reports as a vulnerability. Feedback from the
developers must be taken into account (especially if
bug reports are rejected by the developers). Pledges to
release the source code should be kept.

4.3. Case Study: Missing Baselines

DARWIN [78] was published at NDSS’23 and honored
with a Distinguished Paper Award. The paper focuses on
improving mutation scheduling. More specifically, the au-
thors propose to use an evolution strategy and dynamically
adapt the mutation selection to the target under test.

Artifact status. Artifact evaluation was not available
to DARWIN, but the authors publicly released an artifact.
Our reproduction artifact is available at https://github.com/
fuzz-evaluator/DARWIN-eval.

Observations. Analyzing the paper and artifact, we
found a number of issues:

1) Coverage differences between DARWIN and tested
baselines on FuzzBench are not statistically significant
nor consistent with the paper’s FuzzBench results.

2) The results on MOpt [110] listed in the DARWIN paper
indicate that the port implemented for MOpt may have
erroneously restricted the number of usable mutations.
We find that this strongly influences the results.

3) The artifact appears to be based on Git tag 2.55b of
Google’s AFL fork and not 2.54b, as listed in the paper.

https://github.com/fuzz-evaluator/DARWIN-eval
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4) The artifact does not provide the AFL 2.55b port for
MOpt or their baseline AFL-S, preventing reproduction
or analysis.

We design three experiments to analyze DARWIN. More
experiments and details are available in our artifact.

Experiment 1: Coverage. We use FuzzBench to
reproduce DARWIN’s coverage measurements (in particular,
Table III of their paper). Running all targets for 24 hours, we
compare it against AFL 2.55b and MOpt, which is based on
AFL 2.52b. Notably, we do not use DARWIN as configured
in FuzzBench but follow the author’s recommended configu-
ration (see Experiment 3). In our FuzzBench results, MOpt
does not show the major performance degradation shown
in the paper results. Overall, FuzzBench ranks DARWIN
above MOpt and AFL, both by score and rank. In individual
targets, DARWIN is the best performer in nine of the targets,
but only with statistical significance in four. Our results
show the difference between DARWIN and its baselines to
be less than reported in Table III of their paper. Where they
find DARWIN’s median relative coverage to be the highest
for 15 out of 19 targets, we find this to be the case for
4 out of 18 targets2 (DARWIN is worse than at least one
baseline in two cases and tied with at least one baseline in
the other cases). Note that the original paper evaluates over
a six hour period instead of the 24 hours recommended by
Klees et al. [88]. While we provide the statistical data for the
24 hour data here, we emphasize that the results reported in
the paper for the six hour mark are similarly not reproducible
and invite the reader to view our full evaluation report data
available on GitHub.

In summary, our results show a similar tendency to their
paper, but the difference observed between DARWIN and its
baselines is smaller. Notably, DARWIN reports a coverage
improvement of only 1.73% over AFL, making it difficult
to judge the difference between these fuzzers meaningfully.

Experiment 2: New Baseline. We propose a sec-
ond baseline to test DARWIN’s contribution of a dynami-
cally adapting mutation selection: we replaced its proposed
weighting with a random selection (that is reweighted at
a constant interval). This implementation, DARWINRAND,
provides a new baseline that allows to better judge DAR-
WIN’s contribution, as any improvement can be directly
attributed to DARWIN’s evolutionary algorithm rather than
other fuzzer implementation details, such as dynamically
adapting mutation selection. We find in our FuzzBench re-
sults no statistical significant difference between DARWIN
and DARWINRAND, meaning we were unable to demon-
strate that the evolutionary aspects of DARWIN’s approach
significantly contributed to the improvement compared to
randomly changing mutation selection over time.

Experiment 3: Per-Seed Mutation Scheduling.
After contacting the authors, they noted that the per-seed
mutation scheduling (-p flag) set by FuzzBench should be
disabled for the evaluation because it worsens performance
and was not intended as part of the paper. To confirm this,
we separately evaluated DARWIN with and without per-

2. FuzzBench has meanwhile removed the target php.

seed mutation scheduling on seven targets: we found that
disabling the per-seed mutations slightly improved perfor-
mance overall, leading to higher median coverage in some
targets, but not statistically significantly so for any target by
Mann-Whitney U. We have used the author-recommended
configuration (no -p flag) for Experiments 1 and 2.

Lessons learned: A baseline suited to test the proposed
technique is necessary to detect differences that can be
attributed to the proposed technique rather than the new
fuzzer implementation as a whole. We further recom-
mend publishing all evaluation artifacts, also including
benchmarking reports and raw data.

4.4. Case Study: Non-reproducible Measurements

A recent paper published at USENIX’23, FuzzJIT [161],
aims to detect bugs in JIT compilers, including those used
in modern browsers.

Artifact Status. FuzzJIT underwent artifact evalua-
tion and was awarded the available and functional badges.
Our reproduction artifact can be found at: https://github.
com/fuzz-evaluator/fuzzjit-eval.

Observations. After studying the paper and testing
the artifact, we observe several shortcomings:

1) Coverage does not reproduce as outlined in the paper;
in our experiments, FuzzJIT performed worse than
Fuzzilli on all targets.

2) Reported improvements of the semantic correctness
rate did not materialize in our experiments.

3) It is not possible to study the bugs found because the
time frame, engine versions, and resources spent were
not specified in the paper, hindering fair reproduction.

We design two experiments to analyze the claims of
FuzzJIT in more detail.

Experiment 1: Code Coverage. When trying to
reproduce code coverage, we find significantly different re-
sults. As shown in Table 3, FuzzJIT reports a code coverage
improvement of up to 33% over Fuzzilli. In stark contrast,

TABLE 3. COMPARING THE CODE COVERAGE REPORTED BY FUZZJIT
TO OUR MEASUREMENTS.

Reported Measured
Engine Fuzzilli FuzzJIT Rel. Increase Rel. Increase

JSC 16.47% 21.90% 33% -2%
V8 13.82% 16.67% 21% -3%
SM 15.53% 17.97% 16% -12%

TABLE 4. COMPARING THE SEMANTIC CORRECTNESS RATE REPORTED
BY FUZZJIT TO OUR MEASUREMENTS.

FuzzJIT Fuzzilli
Engine Reported Measured Reported Measured

JSC 90.33% 65.88% 62.80% 66.56%
V8 97.04% 63.67% 64.34% 66.74%
SM 93.28% 63.93% 64.13% 67.47%

https://github.com/fuzz-evaluator/fuzzjit-eval
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our experiments show a code coverage decrease of -2%
to -12%. Despite searching for the cause, we find none
explaining this difference. We speculate that the negative
outcome of the comparison experiment is a consequence
of benchmarking with different versions of Fuzzilli. This
is based on the observation that the state-of-the-art fuzzers
compared to in the evaluation are taken from UniFuzz [99],
which uses an outdated version of Fuzzilli; FuzzJIT itself is
based on a more recent version of Fuzzilli. Unfortunately,
the authors have not responded to our request for help.

Experiment 2: Semantic Correctness Rate. Be-
sides code coverage, FuzzJIT also evaluates the semantic
correctness rate of generated samples, i. e., the number of
samples that do not raise an uncaught exception during exe-
cution in the JS engine. As shown in Table 4, we could not
measure any improvement of the semantic correctness rate,
contrasting the paper’s claim of a significant improvement.

Lessons learned: Relying on outdated baseline ver-
sions can create a distorted picture of a fuzzer’s perfor-
mance. Authors should ensure that they use the latest
version of all tools for comparison.

4.5. Case Study: Uncommon Metrics

Published at USENIX’20, EcoFuzz [175] proposes to
replace AFL’s seed scheduling algorithm with a version
relying on the adversarial multi-armed bandit model. This
way, EcoFuzz finds more paths while generating less seeds.

Artifact status. EcoFuzz has undergone artifact
evaluation and was awarded the passed badge, indicating
that the artifact is available and ready to be reproduced.
Our independent reproduction repository is located online
at https://github.com/fuzz-evaluator/EcoFuzz-eval.

Observations. When studying the paper and artifact,
we noticed that the evaluation deviates from typical fuzzing
evaluations: The work does not report achieved code cover-
age over time. Instead, the paper visualizes the total number
of paths discovered over executions. This aligns with the
paper’s goal of finding more path (bandits in EcoFuzz’s
multi-armed bandit model) with fewer executions (trials in
the model). The presented results may lead readers to infer
that a higher number of total paths equates to higher code
coverage, which is not necessarily true.

Experiment: Code Coverage. We design an exper-
iment in FuzzBench where we compare EcoFuzz against its
best-performing competitor, AFLFast, and its baseline, AFL.
We test these fuzzers on three targets, nm, libpng, and
objdump, where the original evaluation3 found EcoFuzz
to be the fuzzer to find the most paths. Our results, shown
in Figure 5, demonstrate that EcoFuzz achieves less code
coverage than the other fuzzers in all scenarios, except for
a statistically insignificant one, where it performs similar
to AFLFast on libpng. This underlines that finding more
paths does not necessarily translate to achieving a higher

3. The evaluation used readpng, which internally uses libpng, while
we use libpng_read_fuzzer as bundled with FuzzBench.
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Figure 5. The upper two graphs published in the EcoFuzz paper [175]
show a strong advantage over all competitors on the non-standard metric
number of totals paths over the number of total executions. The two plots
at the bottom compare EcoFuzz on the standard metric branch coverage
over time. On the standard metric, EcoFuzz performs significantly worse.

coverage. The full results and the generated FuzzBench
reports can be found in our reproduction repository.

Corresponding with the authors, they state they have
been following fuzzing evaluations at the time that focused
on path coverage, and they have confirmed that EcoFuzz
may cover fewer branches on some binaries, stating that its
goal is to optimize for paths over executions rather than
branches over time.

Lessons learned: A fuzzer may excel at one metric
but not on another; hence, selecting a suitable set
of evaluation metrics is crucial to provide a reader
with the full picture. Evaluating on established metrics
is required, as new metrics may imply a completely
different picture.

4.6. Case Study: Unclear Documentation

Another paper published at USENIX’23, Polyfuzz [96],
targets programs containing code in different languages,
such as interpreter languages calling into native bindings.

Artifact status. PolyFuzz has been awarded the
available badge. Our reproduction artifact is available at
https://github.com/fuzz-evaluator/PolyFuzz-eval.

Observations. While studying the artifact, we no-
ticed irregularities regarding the seed sets used by PolyFuzz
compared to the other fuzzers. An example of such a case is
the image_load harness for the Python image processing
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library Pillow. In this particular case, the fuzzer Atheris gets
39 seed files, while PolyFuzz’s seed directory has 58 files.

Experiment: Fair seed allocation. We intended to
run both fuzzers with their respective seed sets to measure
the impact of these different seed sets on the coverage. Un-
fortunately, the authors’ extension of Atheris (called Atheris-
Cext in the PolyFuzz paper), which would allow to compute
combined coverage for both Python and the native code,
was not released alongside their artifact. Hence, as proxy
measurement, we compute the initial coverage achieved by
PolyFuzz on both seed sets. For the seed set given to Atheris,
PolyFuzz covers 218 edges, while for its own seed set, it
covers 814 edges. Evidently, one seed set provides more than
three times as much coverage as the other, giving PolyFuzz
a headstart during the evaluation.

When contacted, the authors clarified that they did not
keep the seed sets from their evaluation, but they assured us
that they used the seeds from the corresponding benchmarks
for all fuzzers.

Lessons learned: Seeds have an impact on fuzzer
performance. We recommend to give all fuzzers the
same set of seeds and to publish the seeds used.

4.7. Case Study: Incomplete Artifact

Firm-AFL [187], published at USENIX Security’19,
aims to fuzz Linux-based IoT firmware via augmented pro-
cess emulation. To do so, the core fuzzing loop targets a
single binary under user-mode emulation, while selectively
forwarding system calls to a full-system emulator.

Artifact status. Artifact evaluation was not avail-
able to Firm-AFL, but different versions of its source
code are publicly available across multiple repositories.
Our reproduction artifact is available at https://github.com/
fuzz-evaluator/firmafl-eval/.

Observations. During our analysis of the artifact,
we noticed that the repository lacks documentation. Crucial
steps are missing, like correct build instructions for different
configurations, making it hard for researchers to reuse the
artifact and set up the fuzzer and its environment correctly.
Furthermore, when setting up the experiments, we noticed
that some of the experiment configuration files were missing
and target harnessing is heavily inlined with core emulation
logic. Not only do these issues hinder extensibility, but
they also prevented us from getting all targets working to
reproduce the Firm-AFL experiments. The fuzzer binaries
are shipped in a pre-compiled binary version and fail to
build from the provided source code. Moreover, the provided
baseline uses an older version of AFL (2.06b), while the
augmented mode uses AFL v2.52b.

Experiment: Crash Triggers. Being the only ex-
periment with enough documentation to reproduce, we aim
to measure the number of crashes produced by both the
augmented and full-system emulator versions. We were able
to run fuzzing campaigns for 9 out of 11 targets, where
one of them only ran for the baseline and not Firm-AFL.
The remaining two targets lack the required target-specific

configurations. Unfortunately, we could only partially re-
produce the claims as presented in the Firm-AFL paper and
observed one case where the baseline performed better than
Firm-AFL. The full results of our experiments can be found
in our reproduction repository.

Lessons learned: While it is unreasonable to expect
each academic artifact to be of production quality, we
recommend to strive for a reasonable level of readabil-
ity and documentation that allows others to understand
and use the code, thus promoting reproducibility.

4.8. Case Study: Unfair Coverage Measurements

The final case study analyzes FishFuzz [186], published
at USENIX’23. The paper proposes an input prioritization
strategy based on a multi-distance metric that allows for
optimizing the fuzzing efforts towards thousands of targets
(e. g., sanitizer labels) in the sense of direct fuzzing.

Artifact status. FishFuzz has received the available
and functional badges. Our additional experiments are avail-
able at https://github.com/fuzz-evaluator/FishFuzz-eval.

Observations. When studying the artifact in de-
tail, we notice that FishFuzz’s way of measuring coverage
may erroneously give FishFuzz an unfair edge. From all
evaluated fuzzers, FishFuzz was the only fuzzer to place
coverage instrumentation not only within the actual target
but also in the added ASAN instrumentation. Consequently,
FishFuzz also stored inputs that exercised new coverage in
the instrumentation; other fuzzers discarded these inputs,
as no new coverage was observed. This became a problem
when the binary instrumented by FishFuzz was used for
coverage measurements for all fuzzers during evaluation
since—by design—only FishFuzz would keep inputs exer-
cising coverage in the ASAN instrumentation.

Experiment: Fair coverage measurement. To
demonstrate the impact of measuring coverage in instru-
mentation code, we measure the coverage for a binary both
with and without FishFuzz instrumentation. The result is
depicted in Figure 6. If the FishFuzz coverage binary is used
for coverage computation, FishFuzz covers 8.44% more
edges on average over all runs. When using a binary with
standard AFL instrumentation (i. e., where coverage is not
measured in the additional instrumentation), the observed
coverage increase is reduced to 1.69%. Furthermore, the
total number of edges is considerably smaller, showing that
edge counts between different binaries do not translate.
Note that both coverage binaries rely on colliding bitmaps
since the artifact tooling of FishFuzz expects standard AFL
bitmaps to be used. We recommend to not use colliding
bitmaps for coverage measurements.

Lessons learned: Unintended side effects may skew
coverage measurements; we recommend using stan-
dardized methods of measuring coverage.
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Figure 6. Median coverage over time for cxxfilt: In one case, we mea-
sure coverage via a standard AFL binary and, in the other we use FishFuzz’s
binary that contains additional coverage instrumentation. For each fuzzer,
the target was run 10 times for 24h each. The displayed intervals enclose all
ten runs of the respective fuzzer. If the coverage is measured on the biased
binary with FishFuzz instrumentation ( ), FishFuzz++ finds on average
8.44% more edges than AFL++. Measuring coverage on a standard AFL
binary ( ) (without additional instrumentation introduced by FishFuzz),
the coverage delta is only 1.69%.

5. Revised Best Practices for Evaluation

Based on our literature analysis and the case studies,
we now provide recommendations on ensuring a fair and
reproducible fuzzing evaluation. A comprehensive check-
list that summarizes these recommendations is available in
our GitHub repository at https://github.com/fuzz-evaluator/
guidelines. Overall, we recommend that authors thoroughly
review the threats to validity for their respective works to
reflect potential issues that could invalidate their evaluation.

5.1. Reproducible Artifact

For reproducibility, it is crucial to open-source the source
code including documentation. We highly recommend par-
ticipating in an artifact evaluation if available. Furthermore,
it is essential to (i) specify the exact versions of targets
(and harnesses) and fuzzers used for comparison, (ii) use
runtime environment abstractions, such as Docker (where
feasible), (iii) name the baseline on which the new technique
is implemented upon (if any) as well as its version, and
avoid squashing commits of this baseline. In the long term,
a mandatory artifact evaluation as part of the submission
process could improve the quality and reproducibility of
research artifacts.

5.2. Targets under Test

Selected evaluation targets should form a representative
set that shows strengths of the proposed approach and
allows for comparability with previous work. It is therefore

desirable to include targets that have been tested in other
works. Actions such as patches applied to targets should
be explained. If a fuzzer has certain restrictions (such as
symbolic execution-based techniques not being able of mod-
eling all syscalls), we recommend outlining those. We also
highly recommend using well-established benchmarks, such
as FuzzBench, to facilitate easy reproducibility.

5.3. Comparison to Other Fuzzers

It is crucial to compare against the state of the art in
the respective field and the baseline (if any) on which the
new technique is implemented. This also includes well-
established and actively maintained fuzzers, such as AFL++.
Including the new fuzzer in benchmarks such as FuzzBench
allows for comparing against a wide range of fuzzers. If
presenting a new technique with separable design choices,
review them individually via ablation studies, for example,
by designing baselines that successively enable or disable
individual components.

5.4. Evaluation Setup

The chosen evaluation setup should be well documented.
This entails details regarding the used hardware, experi-
ment runtime, number of allocated cores, and processes per
fuzzer. The conducted experiments and how to reproduce
them should be explained.

For the runtime, we recommend choosing at least 24
hours. Longer runtimes may be appropriate if the evalu-
ated fuzzers do not flatline at the end of the experiment.
Regarding CPU cores, choosing a single core may not
be representative of modern systems. Special care must
be taken to avoid congestion in the kernel when running
multiple fuzzers in parallel on one system; even if using
Docker, the kernel may become a bottleneck in resolving
certain syscalls, unfairly slowing down one fuzzing process.
Individual fuzzer instances can be encapsulated in separate
virtual machine instances to avoid such situations.

Regarding seeds, we recommend running with unin-
formed seeds or multiple seed sets. Seeds must be described
and accessible (in the case of informed seeds) to allow
for reproducibility. All fuzzers should have fair access to
all seeds. If using informed seeds, we recommend plotting
or analyzing the coverage achieved by the initial seed set.
This avoids attributing a high coverage achieved to fuzzer
performance instead of the initial seeds.

5.5. Evaluation Metrics

A fuzzer comparison should use standardized, well-
established metrics (at least as a complementary metric if a
technique requires the introduction of a new metric); this
includes both coverage and found bugs. Optimally, both
code coverage and bug-finding capability are evaluated, as
both suffer from individual drawbacks [23], [88], [179]. We
recommend using modern benchmarks that aid in setting up
the experiment and ensure a fair, bias-free execution.
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It is necessary to specify details such as how coverage
is collected, for example, whether it is measured on a non-
instrumented binary, translated blocks from an emulator, or
using established means such as lcov. Ideally, coverage
is not measured using bitmaps with collisions, but using
a collision-free encoding or other means. Additionally, the
evaluation must ensure that the same notion of coverage is
used for each of the compared fuzzers.

When searching for bugs in new targets to show real-
world impact, it is crucial to select reasonable targets,
i. e., projects that are not insecure by design, have been
inactive for years, or are unsuitable for other reasons. We
also recommend running other state-of-the-art fuzzers to
see whether they find the bugs as well, thereby addressing
concerns regarding fuzzing previously untested software.
Crashes identified by the fuzzer should be deduplicated
before opening a report, and the triaging process should
be clearly described. When testing crashes, we recommend
reproducing them on a binary without fuzzer or coverage
instrumentation to avoid reproducibility issues.

Ideally, only maintainers should request CVEs. If they
do not request one, researchers can still link to the bug
report instead. Requesting multiple CVEs for a single bug
or requesting CVEs without coordinating or informing the
maintainers must be avoided. If possible, reporting bugs or
CVEs anonymously allows for providing the reviewers with
access during submission, such that they can inspect the
CVEs or bug reports and assess their validity (as opposed
to the current practice of blinding CVEs and bug reports
during submission, preventing any analysis by reviewers).
That said, we do not believe that having CVEs should be
required to show the practical impact of a fuzzer.

5.6. Statistical Evaluation

Any evaluation should be backed by statistical tests.
To enable these tests, we recommend running at least ten
trials. Alternatively, the number of trials can be calculated
via an a-priori power analysis to ensure a sufficient sample
size leading to statistically significant results [44]. This is
particularly important if the fuzzer under consideration only
slightly outperforms the state of the art, where n ≫ 10
may be required. To avoid the problems mentioned in
Section 3.2.6, we recommend an alternative to the widely
used Mann-Whitney-U test; permutation tests or resampling
tests such as bootstrap methods. These methods avoid strong
assumptions regarding a normal distribution.

If more than two fuzzers have been compared for a
target, the (bootstrap-based) two-sample t-test is not a good
choice, since we would have to perform more than one
pairwise comparison to test the null hypotheses of no dif-
ference between any of the expected means for the fuzzing
methods. This results in the multiple testing problem, which
is the observation that the probability of at least one false
positive result in the set of comparisons performed for a
target exceeds the single test level α substantially. The same
argument holds for other strategies based on two-sample
comparisons such as the Mann-Whitney-U test [3].

A solution to this problem is the bootstrap version of the
ANOVA method. If the ANOVA rejects the null hypothesis,
it shows at level α that there is at least one pair of fuzzing
methods that perform significantly different for the target
considered. In a second step, a so-called Posthoc-test is
performed to determine which pairwise comparisons are
significant, given that the ANOVA has already shown that
there are significant differences at all. Possible Posthoc-tests
are, for example, the Tukey-Kramer method if all pairwise
comparisons among all samples are of interest or the Dun-
nett method if only the comparisons to a reference method,
such as the newly developed fuzzer, are of interest [138].
For a bootstrap version of these algorithms, we propose as
a simple solution two-sample t-tests with critical values for
rejection based on a bootstrap resampling with replacement
of the test statistics. Here, for each simulation, the maximum
value of the test statistics is used for all pairwise compar-
isons of interest. We provide more details, algorithms, and
scripts implementing examples for these tests in our artifact
at https://github.com/fuzz-evaluator/statistics. Additionally,
evaluations should measure effect size, e. g., using Vargha
and Delaney’s Â12 test [156], and quantify uncertainty, for
example, by using intervals in plots.

6. Conclusion

Reproducibility is a cornerstone of science and the basis
for research. In this work, we have systematically studied
how 150 fuzzing papers published in the past six years at
leading conferences design their evaluation. Furthermore,
we have performed an in-depth analysis of the artifacts
of eight papers and attempted to reproduce their results.
Based on the insights gained, we outlined several potential
pitfalls and shortcomings threatening the validity of fuzzing
evaluations. Ultimately, we provided revised recommenda-
tions and best practices to improve future evaluation of
fuzzing research. We published a concise set of guidelines
at https://github.com/fuzz-evaluator/guidelines and welcome
community contributions.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This SoK submission selects 150 papers from 2018-
2023 published in top-tier security and software engineer-
ing venues for fuzzing research. It then performs a meta-
evaluation of each paper’s evaluation in terms of experi-
mental design and adherence to generally accepted fuzzing
guidelines using Klees et al. as a baseline. In addition, eight
papers are subject to artifact evaluation. The conclusions
are stark: fuzzing papers continue to fall short of known
best practices in conducting rigorous fuzzing research. An
updated set of guidelines is then presented.

A.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field
• Other (Reproducibility Study)

A.3. Reasons for Acceptance

1) Fuzzing is an important research area, and understand-
ing whether fuzzing papers hew to best practices in-
tended to maximize the validity and reproducibility of
the results is important

2) The paper uses an overall strong review methodology
3) The paper examines a wide range of fuzzing papers

over time and across conferences
4) The paper includes an artifact evaluation on a subset

of the reviewed fuzzing papers
5) The paper’s observations are significant
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