
FIRMLINE: a Generic Pipeline for
Large-Scale Analysis of Non-Linux Firmware

Alexander Balgavy†

Independent
alex@balgavy.eu

Marius Muench†

University of Birmingham
m.muench@bham.ac.uk

Abstract—Embedded devices are a pervasive and at times
invisible part of our lives. Due to this pervasiveness, security
vulnerabilities may have severe consequences, particularly be-
cause many embedded devices are deployed in sensitive appli-
cations, such as the industrial, automotive, and medical sectors.
Linux-based firmware has already been the subject of extensive
research; however, a considerable part of embedded devices do
not run Linux. Since current literature mostly focuses on Linux-
based firmware, the ecosystem of non-Linux firmware is not well-
known.

Therefore, in this paper, we aim to fill this gap in research
with FIRMLINE, a pipeline suitable for a large-scale study of non-
Linux-based firmware. Using this pipeline, we analyze 21,755
samples, obtained from previous studies and new sources. As
part of a security assessment, we also investigate the presence
of operating systems and memory protections for a subset of
3262 non-Linux ARM samples and find that the majority do not
make use of either. Our work will allow for further research of
non-Linux firmware, such as refining generic analysis techniques
or investigating the OS and deployed security facilities of such
firmware in more detail.

I. INTRODUCTION

Embedded devices are an ever more ubiquitous part of
our lives, and especially the rise of the so called ‘Internet
of Things’ (IoT) led to an unforeseen growth of networked
embedded devices. Although there is no precise data for the
number of devices currently in use, projections frequently es-
timate more than 15 billion active IoT devices for 2023 [1, 2].

Since these devices are so wide-spread, their security is
of the essence, especially if the devices fulfill a life-critical
function. However, embedded systems may have security vul-
nerabilities, just like ordinary desktop software. Numerous
attacks targeting these vulnerabilities demonstrate the severe
consequences of insecure embedded devices. For example,
the MIRAI botnet [3, 4], which compromised mainly IoT
devices, had a peak infection count of 600k and was used for
distributed denial-of-service (DDoS) attacks causing multiple-
hour outages at large companies (including Twitter, Netflix,
Reddit, and GitHub). In fact, Mirai variations and descendants

†Contributions were partly made while at Vrije Universiteit Amsterdam.

are prominent up to this day and infections are still observed
on internet-connected devices [5, 6]. Considering the lasting
prominence of vulnerabilities in embedded devices, and their
potentially devastating effects, it is necessary to study the
security of these devices and their associated firmware.

Previous work on firmware analysis frequently focus
mainly on Linux-based firmware (e.g., [7, 8, 9, 10, 11, 12,
13, 14, 15, 16]). This is particularly true for large-scale
analyses, most of which have been carried out on Linux-based
firmware [7, 8, 9, 10, 11]. Despite recent advances in rehost-
ing [17, 18], most studies on non-Linux-based firmware narrow
their scope to a few vendors and/or a specific architecture
and incorporate domain knowledge. However, this knowledge
cannot be generalized to unknown non-Linux-based firmware,
and we argue that generalization is necessary to account for
the diversity of embedded devices. Hence, given the lack of
generic analysis techniques, the ecosystem of a large portion of
firmware (i.e., that which is not based on Linux) is unknown.

Therefore, in this paper we set out to create a platform to
enable a large-scale security analysis of non-Linux firmware.
In particular, we present FIRMLINE, an open-source analysis
pipeline for unknown firmware. To support firmware targeting
unknown devices, we attempt to develop generic approaches
that do not rely on prior knowledge about the target device’s
characteristics (e.g., the specifications of its CPU). We apply
heuristics to learn high-level facts about the firmware, and
use those facts to inform later stages of the analysis. These
later stages are necessarily architecture-specific (e.g., code
analysis), but the techniques themselves are generic and can
be adapted for other architectures.

To obtain enough non-Linux firmware for a large-scale
study, we re-use existing datasets of such firmware; we also
download additional firmware, which we filter as an early step
in our analysis pipeline.

In summary, we:

• create and analyze a large-scale data set comprising
of 21,755 unique firmware samples, collected from
six publicly-available sources.

• develop FIRMLINE, an open source and modular
pipeline for analysis of non-Linux firmware.

• investigate the presence of security critical features for
3262 arm based samples.

Our dataset, analysis pipeline, and analysis results are
publicly available at https://gitlab.com/firmline/firmline.

Workshop on Binary Analysis Research (BAR) 2024
1 March 2024, San Diego, CA, USA
ISBN 979-8-9894372-0-7
https://dx.doi.org/10.14722/bar.2024.23008
www.ndss-symposium.org

https://gitlab.com/firmline/firmline


II. BACKGROUND

A. Firmware architecture and formats

Firmware is the software that is stored on, and controls,
an embedded device. However, the landscape of firmware
is not uniform and used operating systems, instruction set
architectures, and file formats are by far more diverse than
for software targeting desktop systems.

Operating systems. A large number of firmware targets
devices running a variant of the Linux Operating System (OS),
which we will simply refer to as Linux-based. However, an
embedded device need not use Linux; we refer to the programs
controlling such devices as non-Linux-based firmware. The
latter may be targeted at a device that runs a real-time or
other standard OS, a Windows OS, a custom OS made by
the manufacturer, or that does not have an OS abstraction at
all.

Instruction set architectures. Embedded devices deploy
a variety of instruction set architectures and variants. The
ARM architecture [19] is among the most prevalent and
according firmware is commonly analyzed in the literature,
while other widely used architectures, such as MIPS [20],
received less attention. The ARM architecture has multiple
versions, such ARMv7 for 32-bit devices or ARMv8 which
introduced support for 64-bit devices. Despite the differences
in versions, modern ARM architectures also have different
different ‘profiles’, which provide different functionality in
terms of instructions and architectural components. Among
embedded devices, the R and M profiles are most prevalent.

File Formats. There is no standard on how to store and
distribute firmware, and in practice manufacturers commonly
choose their own format. Firmware may be compressed using
known compression schemes, it may be encrypted, or it may be
packed with a packer program to thwart reverse-engineering.
A common format for firmware is Intel HEX (IHEX), which
represents the binary object in ASCII [21] and includes some
additional metadata such as the address of the individual
chunks of code and data. However, firmware may also be
distributed as a raw binary file, with a custom header or with
no header at all.

B. Binary Program Analysis

When analyzing firmware, access to source code is the
exception, which is why we need to rely on binary analysis
techniques. Commonly, these are distinguished in three ap-
proaches: dynamic, hybrid, and static.

Dynamic Analysis requires to executed the analyzed
firmware. One option is black-box analysis, using the actual
device that the firmware targets. Another option is execution
in a virtual environment, ideally as close as possible to how
it would execute in real-world use. This can be done through
emulation, which faithfully recreates the full hardware model
virtually including peripherals, or rehosting, in which either
only the necessary parts of hardware are inferred, or peripheral
interaction is forwarded directly to the physical device [17].

Hybrid Analysis. In hybrid forms of analysis, such as
symbolic execution, the analysis engine models all system state
(registers, memory, etc.) virtually, and ‘pretends’ to execute

parts of the code by acting out operations on this virtual state.
Instead of concrete values, a symbolic execution engine uses
symbols, which are bound by mathematical constraints on their
possible values; the engine then uses an SMT solver to obtain
concrete values satisfying those constraints.

Static Analysis. In static analysis, the goal is to understand
program behavior and properties only by inspection, without
executing its code. To this end, analysis engines try to trans-
form a binary program into a more accessible format, such
as assembly instructions, intermediate representations (IR), or
pseudocode. Once transformed, they can analyze program flow
using, for example, control flow graphs (CFGs): graphs where
nodes represent basic blocks (series of instructions with one
entry and exit point), and edges indicate the possible control
flow between basic blocks. Another example option is data
flow analysis: tracking which data definitions can reach a
certain point in the program, for example to identify paths
for attacker-controlled data.

Firmware Specific Challenges. In the context of firmware,
program analysis presents more challenges, particularly if
nothing is known about the binary in question. Even basic
static analysis involves several preliminary steps. Assembly
instructions and their operands are represented by specific
sequences of bytes, and the interpretation of the sequences
differs by architecture. Hence, disassembling or lifting a binary
depends on the architecture, so identifying the architecture is
the first step. Next, there is the question of where in memory
the firmware is located and where to begin disassembly: since
instructions and operands are sequences of bytes, starting from
a different offset in the binary will result in some operands
being interpreted as instructions, and vice-versa – yielding
incorrect code. Similarly, indirect jumps can only be correctly
resolved if the firmware code is mapped at the right location.
Therefore, it is necessary to identify the proper base address for
the firmware and the proper entry point for disassembly, and to
use it throughout the rest of the analysis. With this information,
one can disassemble a binary, inspect the assembly code to
understand control and data flow, and perhaps even decompile
the assembly into pseudocode.

III. DATA COLLECTION

Scope. In this study, we focus on low-level non-Linux
firmware. We assume that this type of firmware is mainly
distributed as binary blobs which are neither encrypted nor
compressed. Hence, our data collection approach (and later
analysis passes) focus on single binaries assumed to be loaded
in a single flat address space.

Methodology. We create the data set for this study using two
groups of sources: already existing collections of firmware
that we downloaded manually, and individual samples that we
scraped. The majority of samples come from already existing
datasets: FIRMXRAY’s dataset [22, 23], the Linux firmware
repository (tag 20230210)* [24], the Roccat firmware col-
lection [25], the Monolithic Firmware Collection (commit
a2458fe) [26], and the Tadiphone repository group [27].

While some of these datasets were subject to prior aca-
demic studies, some of them have, to the best of our knowl-

*Note that, despite its name, this repository does not hold Linux-based
firmware, but firmware blobs to be used with the Linux kernel.

2



Data source Previous studies #Samples

FirmXRay HEAPSTER [28], FIRMXRAY [22] 790

Linux Firmware Iooss and Campana [29] (1 sample) 2194

Roccat None 27

Android dumps (Tadiphone) Hou et al. [30] 18315

Monolithic Firmware Collection None (as a whole) 128

IHEX files from GitHub None 301

Table I: Datasets of this paper, their use in previous studies,
and unique number of samples after deduplication.

edge, not been analyzed in previous work. Table I shows
which past studies analyzed the datasets that we include in
this paper. The Linux firmware dataset contains firmware for
use with the Linux kernel, targeted at devices such as WiFi
cards, graphics cards, and devices for digital signal processing.
The Tadiphone group of repositories contains firmware dumps
from Android devices, including phones such as Aligator
S6500 and Infinix Smart 4 Plus. The Monolithic Firmware
Collection contains images of monolithic firmware, collected
from previous studies; while the samples themselves have been
used in the individual papers (e.g., FIRMXRAY), the collection
as a whole has not yet been used. Finally, the Roccat repository
contains firmware for Roccat devices like keyboards and mice.

While most data sources did not require special processing
and we could retrieve the firmware directly, some automation
was needed for the Tadiphone firmware. The Tadiphone repos-
itory group contains a large number of repositories, and not
all of them contain firmware. Therefore, we wrote a scraper
utilizing GitLab’s API to search for repositories in the group
which contain known firmware paths. We then cloned the
repositories and imported firmware files from those known
paths.

Lastly, we also scraped IHEX files from GitHub. We
initially tried to use GitHub’s search API, but the results were
unreliable (often, the API would return a number indicating
there were results found, but the actual list of the results was
empty) and we frequently encountered rate limiting. Therefore,
we use Selenium [31] in combination with geckodriver [32]
to access GitHub’s advanced search page to find repositories
containing files with the IHEX extension. Using GitHub’s
search operators, we excluded already known repositories, at
least to the degree that we could, considering GitHub’s 500
character search limit. While we needed to trigger additional
reloads to overcome reliability issues, this process yielded a list
of repositories known to contain files in IHEX format which
we could then clone.

Dataset Composition. Our final dataset contains 21,755 sam-
ples; we filtered out 34,001 duplicate files, with 8394 unique
hashes. By source, the duplicate hashes matched with 27,469
samples from the Tadiphone repositories, with 5580 from the
Linux firmware repository, with 150 IHEX files from GitHub,
with 4 from the Monolithic Firmware Collection, and with
798 from FIRMXRAY. We show the composition of the de-
duplicated dataset in Table I.

IV. DESIGN

We now present FIRMLINE, our pipeline for analyzing
firmware samples. Figure 1 shows an overview of FIRMLINE
and its different analysis components.

A. Overview

When a new firmware sample is processed, we first estab-
lish whether it is a duplicate or already-processed file (1). If
this is not the case, we start a preliminary analysis, collecting
simple characteristics (2). Then, the file passes through two
stages where we attempt to detect information about the
firmware’s target device: whether the target is Linux-based
(3), and the target’s architecture (4). The next analysis stage
detects the base address of the binary and starts disassembly
of the binary (5). The last analysis step carries out analyst
defined code analysis passes (6). Finally, we persist the results
of these analyses in a database (7). Analysis stages may time
out, in which case we store information about this timeout
in the database. We also note that, step 5 and 6 require
architecture specific knowledge and are, thus, not fully generic.
However, the modular design of our pipeline allows for easy
modification and integration of different implementations for
different architectures. The remainder of this section covers
the individual analysis stages in more detail.

B. Preprocessing (1)

When a new sample is processed, if it is an IHEX file,
we first convert it to a binary file. Next, we calculate a hash
over the binary to detect duplicates and already processed files.
We check whether we had already processed this file before
by comparing hashes; if they match, then we also carry out a
byte-wise comparison of file contents to detect potential hash
collisions.

C. Preliminary Analysis (2) and Linux Detection (3)

Once we have determined that we have not yet processed
a given file, we collect some surface-level properties (step 2
of Figure 1): the size of the file, its entropy, and whether it
contains strings of at least 32 consecutive 0xFF or 0x00
bytes, which are often used as padding in binary firmware.
We check for this padding because its presence may indicate
that the file in question is an executable, rather than plain data.
In step 3 of Figure 1, we scan the file for known signatures;
if it contains contains strings known to be present in Linux-
based software, (i.e., any of ‘uimage’ or ‘u-boot’, ‘squashfs’
[33], ‘linux’), or a string denoting a filesystem, we consider
the firmware target to be Linux-based.

D. Architecture Detection (4)

The next stage of FIRMLINE detects the architecture of
the firmware’s target device (step 4 in Figure 1). It consists
of two parts: scanning and verification. In the first step, we
follow the insights of Granboulan [34] and scan a binary
using statistical analysis techniques to determine possible
architecture candidates. In the second step, we validate the
architecture candidates with a reverse engineering framework:
if the framework identifies functions, we consider the detected
architecture to be correct. To reduce analysis time, we only

3



Figure 1: FIRMLINE analysis pipeline.

test for the top two most probable architectures, and select the
one with the highest number of detected functions. To find
functions, reverse engineering frameworks may apply a wider
range of techniques outside the scope of this study, such as
function prelude search, call analysis, reference analysis, em-
ulation to find computed references, type matching, non-return
analysis, or graph reference analysis [35]. Many architectures
support little-endian, big-endian, or a combination of the two;
in those cases, we try all possibilities, and choose the one
with the highest number of detected functions as the correct
architecture.

E. Base address detection and disassembly (5)

This stage disassembles the binary using information ob-
tained in the previous stages. Before a binary can be dis-
assembled, it must be loaded at the correct base address,
otherwise the disassembly will be wrong. For firmware formats
where the base address is unknown, we deploy heuristics to
resolve it. We adopt an approach similar to the state-of-the-art,
FIRMXRAY [22], with some modifications.

The main insight behind FIRMXRAY’s approach is that
firmware will require absolute pointers during runtime. Hence,
FIRMXRAY first identifies multiple potential absolute pointers
to resolve the base address for ARM binaries: (1) absolute
function pointers used for indirect branches, (2) absolute
pointers to strings passed as arguments to functions, and (3)
vector table entries. Based on the detected absolute pointers,
FIRMXRAY models different base addresses and chooses the
candidates which allows most pointers to resolve correctly.
However, we note that absolute string pointers and vector
table entry pointers require domain knowledge: FIRMXRAY
uses information from vendor-specific SDKs to identify which
functions accept string pointers as parameters, and knowledge
about the memory layout of IoT devices to locate the vector
table. Since absolute function pointers are the only type that
can be readily generalized, this is what we implement in
FIRMLINE, and what we will focus on for the remainder of
this section.

Our approach, following FIRMXRAY’s absolute function
pointer detection and base address identification, consists of
four steps:

1) Disassemble the binary from offset 0,
2) Scan the disassembly for absolute function pointers,
3) Scan the disassembly for function entry points,
4) Try all possible offsets and select the offset with

the most absolute pointers resolving to valid function
entry points.

In this process, the detection of absolute function point-
ers and function entry pointers require architecture-specific
knowledge. Indirect branch targets can either be encoded via
registers, memory, or both, dependent on the target architec-
ture. While indirect branches via memory may directly encode
the branch target as an absolute pointer, we apply simple
backwards taint analysis to identify the target for indirect
branches via registers. Furthermore, one prevalent technique
for function entry detection scans for instructions usually
emitted by compilers for function prologues. This necessarily
requires knowledge of the target architecture and, thus, cannot
be implemented in an architecture-independent way.

Once we detected the absolute function pointers and func-
tion entry points, we try to find an offset that maximizes
the number of function pointers that match with function
prologues. We iterate over integers in the range from 0 to the
smallest address in the list of absolute pointers; we know the
upper bound because loading the binary at an address above
the smallest function pointer would render that pointer invalid.
For each number (offset) x in this range, we calculate for each
absolute pointer p the difference d = p−x (i.e., we reduce the
address of the pointer by the offset). If the offset x is correct,
this altered pointer d should be in the list of function prologues.
We choose the final offset depending on how many function
pointers, modified with that offset, resolve to valid function
prologues. This is also why false positives in function entry or
branch target detection do not impact accuracy: the constraint
solving approach will reduce the set of possible functions to
only those with valid references (though a very high number
of false positives may impact processing speed).

F. Code Analysis (6)

Once we have calculated a base address, we rebase the
binary to that address, and disassemble it again. Now, different
code analysis passes can obtain additional knowledge about

4



the target firmware. For instance, one pass could detect the
presence of security critical features, while others aim at
the detection of string-processing functions. Overall, the code
analysis stage is meant to be extended by analysts to extract
desired knowledge about a specific subset of firmware samples.

G. Data Storage (7)

Once the previous stages are completed, we store the
analysis results in a relational database, using a cryptographic
checksum of a file as its unique identifier. We choose a
relational database, because it allows us to encode consistency
checks into the schema. For example, if an architecture is not
detected, there will be no base address detection and analysis
data, but if one is detected, the presence of data depends on
whether the architecture is supported by the analysis system.
These checks can be validated at insertion time, ensuring that
all data we persist is consistent.

V. IMPLEMENTATION

We implemented a proof of concept of FIRMLINE in
Python 3 and POSIX shell scripts, with 1169 custom SLOC,
as measured by Tokei [36]. This code connects the various
tools, collects results, and saves them to a database. We
persist data in an SQLite database, with constraints encoded
into the schema to ensure consistency. The user can change
configuration parameters for the pipeline by modifying a
configuration file, following the INI file structure. Below, we
outline the implementation specific details for the individual
analysis stages.

Preprocessing and Preliminary Analysis. For conversion
of IHEX files, we use Bincopy [37], which can convert such
files to (among others) a binary format. To search for padding
in the file, we use Bgrep [38]. We then employ Binwalk [39]
for an entropy scan, and we run its signature scan option to
detect Linux-based firmware in step 3 of Figure 1.

Architecture Detection. To detect the architecture in step
4, we use CPU REC [34]. Since its Python API only outputs
one result, we modify its code to return the top two architec-
tures. We pass the architectures detected by cpu rec to Radare2
using r2Pipe, and run two code analysis commands: ‘aaaa’
(auto analysis) and ‘aab’ (basic-block analysis using the Nu-
cleus [40] algorithm). If Radare2 finds functions, we consider
the file to indeed be firmware intended for the architecture
detected by cpu rec. Some architectures are supported by more
than one disassembler in Radare2 (e.g. for SPARC, Radare2
has both sparc and sparc.gnu); in those cases, we try all
disassemblers that support a given architecture.

Base Address Detection. For base address detection, we
use Ghidra v10.3 [41] in headless mode, with a Python script
to automate analysis. To load a file, Ghidra requires us to
be explicit about the language of the file, specifying the
following: the architecture, whether the file is big-endian or
little-endian, whether it is 32-bit or 64-bit, and what variant of
the architecture it targets. However, we do not get this level of
detail from cpu rec, or any other similar tool with comparable
reliability, so we need to choose a language that would offer
the widest support.

In our proof of concept, we decide to implement our base
address detection for ARM binaries: ARM is the market leader

in many domains of embedded devices [42, 43, 44, 45], so this
choice is in line with previous work. For ARM, previous steps
of the pipeline narrow down the instruction set architecture to
one of the following cpu rec defined strings: ARMhf, ARMel,
ARMeb, ARM64. We decide to load ARMhf and ARMel as
ARM 32-bit Cortex little-endian, and ARMeb as ARM 32-bit
Cortex big-endian, because the Cortex variants offer a superset
of possible features (and if a particular sample does not target
the Cortex variant, it simply will not use those extra features).
For ARM64, we try both the 64-bit and 32-bit variants, and
select the one with the highest number of cross-references
in Ghidra. If a binary uses Thumb instructions, Ghidra can
automatically detect this, and interpret the bytes as Thumb
where necessary.

When looking for absolute function pointers, we search for
branch instructions, such as blx. Those instructions branch to
a memory address stored in the operand register, so unless the
operand is the link register, we use simple backwards taint
analysis to identify the load populating the branch destination
register. To detect function entries, we scan for instructions
typically encountered in function prologues on ARM to set up
the function’s stackframe (e.g., the push-pseudo instruction or
stmfd). We also query Ghidra for addresses of code blocks
that it identified as functions, and add them to the list of
function prologues. Ghidra uses additional techniques to find
functions: it decompiles code to determine unknown calling
conventions, searches for architecture-specific byte patterns,
discovers non-returning functions, and creates function refer-
ences for code that is called like a function [46].

Code Analysis. In our proof-of-concept implementation of
FIRMLINE, we implement two security analysis passes with
Ghidra: detection of presence of OS abstractions, and whether
the firmware accesses a Memory Protection Unit (MPU).

To identify OS abstractions, we leverage an intrinsic of
the ARM instruction set: the SuperVisor Call (or, in short, the
svc instruction). This instruction typically denotes a call to
an operating system to provide a service [47]. Therefore, we
search the code for instances of the svc instruction, and if we
find it, we infer that the firmware likely uses an OS abstraction.

Furthermore, memory-level protection may enhance the
security of firmware, and ARM-based embedded systems may
deploy an MPU. The MPU is a hardware unit that allows
software to define and change attributes and access permissions
for memory regions. On ARM devices, the MPU can be
configured in two ways: M-profiles usually access the memory-
mapped MPU configuration registers [48], while R-profiles can
interface with the system co-processor for MPU configuration
via specialized instructions [49]. Therefore, we search the
firmware for these two behaviors, and if we find either of
them, we conclude that the program interacts with an MPU.

Timeouts. Parts of the pipeline and analysis passes may
take a long time or not terminate at all. To ensure operation
throughout a large-scale analysis, we add timeouts to the
callbacks into different tools: 5 minutes for entropy calculation
via binwalk, 10 minutes for a signature scan with binwalk, 30
minutes for function detection with Radare2, and 30 minutes
for base address detection and code analysis with Ghidra. The
timeouts are configurable by the user, through the central INI
configuration file of FIRMLINE.

5



VI. EVALUATION

We evaluate FIRMLINE on a server running Ubuntu 22.04.1
LTS, with 4 single-thread CPU cores of an AMD EPYC 7662
processor and 8GB of RAM; we use 13GB of storage.

We first determine the correctness of our base address
calculation (subsection VI-A), and then evaluate FIRMLINE
on our collection of firmware samples. We first try to answer
several questions about our data set: how many samples target
non-Linux firmware, what architectures are targeted, and what
proportion of firmware samples have a non-zero base address
(subsection VI-B). Afterwards, we assess the presence of
operating systems and MPU configurations using our proof-
of-concept analysis passes (subsection VI-C). Lastly, we report
key performance metrics for FIRMLINE, such as analysis time
and number of timeouts (subsection VI-D).

A. Accuracy of Base Address Detection

To evaluate FIRMLINE’s base address detection capabili-
ties, we compare against FIRMXRAY as the state of the art
and consider its results as ground truth. Therefore, we run
FIRMXRAY on its dataset (which is a subset of our dataset),
and compare its base address results with the results of
FIRMLINE for the same dataset. As an additional comparison
point, we also run FIRMXRAY while disabling the components
that require domain knowledge about the target device; we will
hereafter refer to this modified version as FirmXRay-M.

In total, FIRMXRAY’s dataset contains 790 samples.
FIRMXRAY processed 780 of them, while FIRMXRAY-M
processed all 790, and the approaches resolve a matching base
address for 603 samples. In contrast, FIRMLINE only resolved
a base address for 307 samples. In more detail, all samples
had an architecture detected, and 1 sample’s architecture was
detected as IA-64, which is not supported by Radare2. For the
rest of the samples, 10 target the 6502 architecture, and 779
target ARM. In the Radare2 analysis, which should confirm
or refute the detected architecture, 45 of the samples timed
out, all of them ARM. 744 were analyzed, of which 10 did
not have functions detected, and the remaining 734 did. Those
10 were all reported as targeting 6502 by cpu rec, but the
analysis with Radare2 correctly refuted this (by not detecting
functions), because all of the samples in FIRMXRAY’s dataset
are known to target ARM [22]. Therefore, our system suc-
cessfully detected the architecture of 734 samples – all of them
targeting ARM, as expected. While resolving the base address,
422 failed because of an error: 207 because FIRMLINE could
not detect absolute function pointers, 214 because an offset
satisfying the constraints could not be found, and 1 could not
be disassembled by Ghidra.

Out of the 307 successfully analyzed samples, FIRMLINE
resolved the same base address as FIRMXRAY for 3 samples,
and the same address as both variants of FIRMXRAY for
40 samples, for both zero and non-zero offsets. Our results
indicate that our approach, while not relying on domain
specific knowledge, only resolves the correct base address for
a small fraction of samples. Therefore, further development is
is needed to improve FIRMLINE’s success rate.

0

200

400

600

0.00 0.25 0.50 0.75 1.00
Mean entropy

N
um

be
r 

of
 s

am
pl

es

Figure 2: Mean entropy of 21,755 samples.

B. Landscape of Non-Linux-Based Firmware

To assess the landscape of non-Linux-based firmware, we
follow the data set through the different analysis stages of
FIRMLINE. We further summarize the analysis results after
filtering out Linux samples in Table II.

Preanalysis. We first analyze the entropy of all 21,755
samples in our dataset. As Binwalk outputs an entropy value
for each detected section of the file, we calculate the mean
across the whole file. We choose the mean as a metric because
the values can vary significantly, and we want extreme values
to have a higher effect on the result. For each sample, we plot
the mean entropy in Figure 2. The majority of samples have
an entropy below 0.7, which suggests that they are likely not
encrypted, packed, or compressed, confirming our assumption
noted in Section III. When searching for padding bytes, 116
samples contained at least 32 consecutive 0xFF bytes, 8281
contained at least 32 consecutive 0x00 bytes, 6015 contained
both, and 7343 contained neither.

Linux detection. Based on output from Binwalk, we
detected 248 samples as Linux-based (around 1.16% of the
total dataset). Of this 248 samples, 185 were detected via
signature matching and 63 via included file systems. In terms
of data source, 19 were from the Linux firmware repository,
1 from the Roccat repository, and 228 from the Tadiphone
dumps. These results are also summarized in Table III.

Architecture detection. Out of the remaining 21,507 non-
Linux samples, FIRMLINE detected an architecture for 16,938
samples via cpu rec. Table IV shows the top architectures as
reported by cpu rec and how many of them were confirmed
with Radare2. For these samples, 9475 had an architecture
supported by Radare2. FIRMLINE could not confirm the archi-
tecture for 1101, as Radare2 timed out given the limit specified
in section VI. The remaining 8221 were analyzed successfully
with Radare2, and the architecture as suggested by cpu rec
was confirmed for 3297 of them. Interestingly, in none of these
cases 6502 was confirmed as the architecture by Radare2,
indicating a high false positive rate for cpu rec (at least for
this specific architecture), and the importance of FIRMLINE’s
architecture verification step.

6



Source Architectures Verified Base 0 Base not 0 MPU usage svc instructions Avg. analysis time

FirmXRay ARMhf (779), 6502 (10), IA-64 (1) 734 22 285 0 / 0 287 00:09:18

Linux Firmware 6502 (207), None (198), Xtensa (159), IA-64 (157), ARcompact (156), ARMhf (150),
TMS320C6x (126), 8051 (108), X86 (81), ARMel (78), NDS32 (77), OCaml (74), i860
(65), NIOS-II (59), MMIX (57), IQ2000 (49), Mico32 (39), Cray (36), MIPSeb (30),
STM8 (27), MIPS16 (22), MN10300 (20), VAX (19), 68HC11 (18), RISC-V (16), TriMedia
(15), MSP430 (15), Epiphany (12), SPARC (11), MIPSel (11), HP-Focus (10), SuperH (8),
Blackfin (8), WE32000 (7), FT32 (6), Cell-SPU (4), Visium (4), AxisCris (4), ROMP (3),
WASM (3), AVR (3), V850 (3), ARC32eb (2), #6502#cc65 (2), Alpha (2), RX (2), PPCeb
(2), ARM64 (1), FR-V (1), ARMeb (1), Stormy16 (1), PIC10 (1), CUDA (1), PDP-11 (1),
M88k (1), M68k (1), ARC32el (1)

550 7 38 0 / 1 23 00:07:07

Roccat ARMhf (23), SuperH (1), None (1), 6502 (1) 23 0 0 0 / 0 0 00:06:20

IHEX (GitHub) ARMhf (79), NDS32 (60), Stormy16 (59), 6502 (46), 8051 (29), MMIX (7), None (6),
Xtensa (3), MN10300 (2), i860 (2), ARcompact (1), Visium (1), RL78 (1), ARMel (1),
OCaml (1), FR30 (1), CompactRISC (1), IQ2000 (1)

104 65 0 0 / 2 4 00:07:19

Android dumps (Tadi-
phone)

6502 (4435), None (4362), MMIX (1472), OCaml (1224), ARMhf (973), NDS32 (852), IA-
64 (778), Xtensa (485), STM8 (299), ARM64 (284), Moxie (271), IQ2000 (255), WASM
(235), ARMel (211), SuperH (182), i860 (140), TMS320C6x (109), Visium (107), VAX
(103), 8051 (98), ARcompact (94), MIPS16 (90), FR-V (90), Cray (77), Stormy16 (71),
MIPSel (65), MIPSeb (59), Z80 (44), HP-Focus (42), CLIPPER (41), RISC-V (39), Blackfin
(36), MSP430 (35), S-390 (34), PIC10 (32), PIC16 (32), Epiphany (32), TriMedia (31),
ARC32el (19), MicroBlaze (18), CompactRISC (17), MN10300 (15), X86-64 (14), FT32
(13), Mico32 (12), PIC24 (12), PDP-11 (12), NIOS-II (11), WE32000 (11), ARMeb (11),
M32R (11), RX (9), ROMP (9), ARC32eb (8), M68k (8), H8S (7), PPCeb (7), FR30 (6),
68HC11 (5), AxisCris (5), MCore (5), AVR (4), SPARC (3), Alpha (3), X86 (2), M88k (2),
V850 (2), PIC18 (2), TLCS-90 (2), H8-300 (1), Cell-SPU (1), CUDA (1)

1800 59 102 0 / 24 43 00:03:57

Monolithic Firmware
Collection

ARMhf (119), ARMel (3), None (2), MMIX (1), OCaml (1), IA-64 (1), 6502 (1) 76 28 6 0 / 1 1 00:04:36

Table II: Summary of analysis results for 21,507 non-Linux samples in our dataset (analysis time in hours, minutes, and seconds).

Source Padding No padding Linux

FirmXRay 0x00 (542), 0xFF (8), Both (68) 172 0

Linux Firmware 0x00 (1419), 0xFF (6), Both (266) 503 signature (15), fs(4)

Roccat 0x00 (23), 0xFF (1), Both (1) 2 fs(1)

IHEX (GitHub) 0x00 (135), 0xFF (13), Both (72) 81 0

Android dumps (Tadiphone) 0x00 (6076), 0xFF (88), Both (5568) 6583 signature (170), fs(58)

Monolithic Firmware Collection 0x00 (86), 0xFF (0), Both (40) 2 0

Table III: Summary of preliminary analysis results.

Architecture Count #Confirmed by r2?
6502 4758 0
ARMhf 2197 1605
MMIX 1538 -
OCaml 1323 -
NDS32 989 -
IA-64 939 -
Xtensa 648 276
STM8 327 -
IQ2000 314 -
ARMel 296 143
ARM64 295 266
Moxie 271 -
ARcompact 251 244
WASM 238 -
8051 236 199
TMS320C6x 235 -
i860 207 -
SuperH 191 183
Stormy16 131 -
VAX 122 125
Other 1780 257

Table IV: Number of samples detected by cpu rec and con-
firmed by Radare2 for the 20 most common detected archi-
tectures. Other architectures are grouped under “other” and
“-”indicates that the architecture is not supported by Radare2.

Base Address Detection. From the 3297 confirmed sam-
ples, 2019 had an architecture supported by FIRMLINE’s
Ghidra analysis. While detecting the base address, 22 samples
timed out in the initial loading stage. For the rest, 1391 failed

to resolve a base address: 1068 because of a lack of absolute
function pointers, 1 because of a lack of function prologues,
and 322 because an offset satisfying the required constraints
could not be found for the sample. While some samples had a
zero base offset, the majority had a non-zero offset, as shown
in Table II.

This leaves a total of 606 samples which made it through
the pipeline and are ready for the analysis passes: 307 from
FIRMXRAY, 65 IHEX files from GitHub, 39 from the Linux
firmware repository, 34 from the Monolithic Firmware Collec-
tion, and 161 from the Tadiphone firmware dump repositories.

C. Security Assessment of Non-Linux-Based Firmware

Next, we analyze the firmware for two properties with
potential security implications: interaction with an operating
system and use of memory protections. For this part of the
evaluation, we do not consider only the 606 samples as
established in the last subsection, but also consider a wider
data set. In particular, we amend the data set with samples that
are, according to cpu rec, supported by our analysis passes,
but which did not pass through the architecture verification
step with Radare2. This expanded data set consists of 3262
samples. Out of these samples, FIRMLINE could resolve the
base address and continue to the security analysis for 771.

OS Access/Usage. Our first analysis pass aims to infer the
presence of an OS by checking whether the firmware contains
svc instructions. Out of the 606 samples that made it through
the pipeline, 357 contain such instructions, the majority at
more than 10 distinct locations. These 357 come from three
sources: 287 from FIRMXRAY, 4 from IHEX files, 22 from
Linux firmware, 1 from the Monolithic Firmware Collection,
and 43 from the Tadiphone group. For the expanded data set we
reach a total of 415 out of 771 samples with svc instructions.
The majority of samples still have such instructions at more
than 10 distinct locations each. In terms of sources: 293

7



FirmXRay Github (ihex) Linux firmware Roccat Monolithic firmware collection Tadiphone

0

250

500

750

1000

0 500 1000 1500 2000 2500
Analysis time (sec)

N
um

be
r 

of
 s

am
pl

es

0%

25%

50%

75%

100%

0 500 1000 1500 2000 2500
Analysis time (sec)

P
er

ce
nt

ag
e 

of
 s

am
pl

es

Figure 3: Analysis time for successfully processed samples.

0

5000

10000

15000

20000

0 500 1000 1500 2000 2500
Analysis time (sec)

F
ile

 s
iz

e 
(K

B
)

Source
FirmXRay

Github (IHEX)

Linux firmware

Monolithic Firmware Collection

Roccat

Tadiphone

Figure 4: File size vs full pipeline analysis time for success-
fully processed samples.

samples are from FIRMXRAY, 4 from IHEX files, 39 from the
Linux firmware repository, 5 from the Monolithic Firmware
Collection, and 74 from the Tadiphone group.

We further conduct a manual analysis of 30 randomly
selected samples: 15 with detected OS access, and 15 without.
In this manual review, we verified the communication (or lack
of communication) with an OS through Ghidra’s graphical
interface, by checking for svc instructions. In addition, we
also searched for the string “svc” in the binary, using Ghidra’s
string search. The results are in Table VI in Appendix A.
For 27 samples, our manual analysis found the same results
as FIRMLINE. However, in 3 samples, our string analysis
found strings that indicate the presence of an OS, such as
“Unknown SVC 0x%02lX called at 0x%08lX”, “Tsk Ssvc”,
and “Elf Ssvc”. We cannot know for certain, but if the samples
with these strings are targeting a device with an OS abstraction,
FIRMLINE would have a false negative rate of 16.7%.

MPU Access/Usage. Applying our approach to 606 sam-
ples that passed through the pipeline, we found 28 samples
that access memory within the address range designated for
the MPU: 2 in converted IHEX files, 1 in the Linux firmware
repository, 1 in the Monolithic Firmware Collection, and 24 in
the Tadiphone firmware repository group. None of the samples
used dedicated instructions to access the MPU. The extended
dataset yielded 14 more samples accessing the MPU memory

range: 1 from the Linux firmware repository, 12 from the
Monolithic Firmware Collection, and 1 from the Tadiphone
dumps. However, even in this larger dataset, there were no
samples that used dedicated instructions for MPU access.

To check FIRMLINE for false positives/negatives, we con-
ducted a manual analysis of 30 randomly selected samples: 15
with detected MPU access, and 15 without. We replicated the
steps in the pipeline manually, and verified the MPU access
(or lack of access) through Ghidra’s graphical interface, by
checking for memory instructions targeting the MPU memory
range (as in our analysis, there were no samples that used
special MPU-related instructions). The results are in Table V
in Appendix A. For all samples, our manual analysis found
the same results as FIRMLINE.

D. Pipeline Performance

We now inspect all samples in our data set which did not
time out at any stage in the pipeline (including code analysis
samples). Out of the 21,755 samples we start our analysis with,
none experienced a timeout during the preliminary analysis.
However, 1183 time out during base address recognition,
and 50 during base address detection and analysis passes.
Accounting for all samples which either failed or timed out
during an analysis step, FIRMLINE was able to process 3435
samples successfully.

Figure 3 shows the analysis time for this successfully pro-
cessed samples. When considering the distribution of number
of samples over analysis time, we see that the majority of
samples that successfully completed analysis took less than
14 minutes to complete the pipeline. In general, analysis time
was either very fast (2 minutes or less), or between 10 and
15 minutes, with some outliers. On the other hand, when
considering the relative amount of samples for a given analysis
time range, we see that the Linux and Tadiphone firmware
had the largest variety in analysis time; firmware from other
sources generally stayed in the 10-15 minute analysis time
range. Firmware from the Monolithic Firmware Collection
seems to be the fastest overall. Figure 4 shows a comparison
of the analysis time of samples (horizontal axis) with their
file size in kilobytes (vertical axis). There does not seem to
be a strong trend of analysis time scaling with the size of

8



a given sample, though the samples with the shortest analysis
time were mostly small. There are outliers on both sides of the
spectrum: larger samples that processed quickly, and smaller
samples that took longer to process. This may indicate that
even smaller samples can contain complex logic.

VII. DISCUSSION

We obtain several insights from the results of our eval-
uation. First, we see that it is possible to analyze unknown
firmware without relying on prior or domain-specific knowl-
edge, although results lack behind approaches relying on such
knowing. Additionally, the analysis time for our pipeline does
not seem to correlate with the size of the firmware samples.

In our large-scale survey of non-Linux firmware, we
learned that ARM is indeed one of the dominant architectures,
at least for our dataset. The base address for non-Linux sam-
ples is most commonly non-zero. These insights can help focus
future efforts and guide development efforts for analysis passes
applicable to the most common architectures. During our
security-related analyses, we observed that non-Linux ARM
firmware generally does not seem to use special instructions
to access the MPU; however, some samples do access the MPU
via memory-mapped registers. Furthermore, some samples
contain instructions to interact with an OS, possibly indicating
that the target devices use an OS abstraction.

There are several threats to the validity of our results. The
parts of FIRMLINE are dependent on each other: for example,
when we detect the architecture of a sample, we assume this
architecture for the sample throughout the rest of the analysis,
and if the initial assumption is incorrect, our results at the
end of the pipeline will be inaccurate. We also rely on the
correctness of output from external tools, such as cpu rec for
architecture detection and Ghidra for disassembly. Similarly,
we rely on Bincopy to correctly translate an IHEX file to a
binary. If some of these intermediary tools produce incorrect
output, this will negatively impact the validity of our results.

VIII. LIMITATIONS & FUTURE WORK

The work presented in this paper has three major limita-
tions. The base address detection system is heuristic-based,
and as such is not guaranteed to work for all firmware.
Furthermore, base address detection and analysis passes are
currently only applicable to ARM firmware, yet embedded
devices, often use a different architecture. Finally, the analysis
process requires a considerable amount of time, and the data
was mostly collected manually. In this section, we will discuss
these limitations in more detail.

In subsection IV-E, we explained our approach to detect
the base address for firmware, which was modeled on that
of FIRMXRAY [22]. An issue with this method is that it
is heuristic-based, and relies on the convention of functions
starting with prologues. We use instruction setting up the
stack frame in function prologues to ‘signpost’ the start of
a function. However, this may not always be the case: a
branch target can essentially be any instruction. Hence, if a
compiler (or a programmer) decides that no registers need
to be saved to the stack before executing the rest of the
function, there will be no such signpost, and hence fewer
recognized functions. Therefore, determining a base address in

this way is not guaranteed to work, which is why FIRMXRAY
uses additional pointer types when resolving a base address.
We tried to alleviate this by augmenting the list of found
functions with functions identified by Ghidra’s built-in analysis
passes. However, even with this optimization, our approach
was only able to find a base address for a small fraction of
FIRMXRAY’s samples, as described in subsection VI-A. It is
also important to note that we use FIRMXRAY as ground truth
for our experiments; However, obtaining actual ground truth
for the analyzed firmware samples is challenging. Possible
future work could investigate further ways to confirm the base
addresses of samples, and augment the detection algorithm
with that of Zhu et al. [50], or with recent advances in the
field of function identification techniques (e.g., [51, 52, 53]).

Both base address detection and analysis passes are cur-
rently implemented using only instruction-level analysis tar-
geting the ARM architecture. They search for ARM-specific
instructions, and uses instruction alignment to simplify initial
loading of the binary. Yet, as evidenced by the composition of
our dataset described in section VI, a large portion of firmware
does not necessarily target the ARM architecture. Hence,
future work would extend FIRMLINE to generalize proposed
passes or adapt them to different architectures. To support
other architectures in analysis, one could explicitly modify
the code analysis to search for the instruction equivalents on
other architectures. However, a more generic solution would
be to leverage binary lifting techniques to perform analysis on
a shared intermediate representation.

For the most part, data collection in this study was manual.
This limits the amount of data we can collect, so automatically
searching for and downloading non-Linux-based firmware
could be another direction for future work.

Finally, the analysis itself is rather time-intensive, as
discussed in subsection VI-D. This is partially due to our
reliance on Ghidra, which is a program primarily intended
for interactive analysis and is not optimized for large-scale
headless processing. Ghidra was also used by the state-of-the-
art, FIRMXRAY, but it could be beneficial to port FIRMLINE
to a tool targeted towards automated analysis, especially for
large-scale analysis.

IX. RELATED WORK

The most similar previous work is FIRMXRAY [22],
which also inspired parts of our approach. The evaluation of
FIRMXRAY includes a large-scale study of non-Linux-based
firmware, specifically focused on vulnerabilities in Bluetooth
Low-Energy technology at the link layer. To collect firmware,
the authors downloaded mobile apps from Google Play, and
extracted the firmware contained within, recognizing it through
API functions and vendor-specific signatures. They narrow
their scope to firmware from two specific vendors (Nordic
and TI), use knowledge of the target’s architecture and the
vendors’ SDKs to aid base address detection. The SDKs also
allow them to resolve configuration values, and determine if
those values lead to security issues. They analyze a dataset of
793 images, and find that 98.1% of devices have a static MAC
address, 71.5% Just Works pairing, and 98.5% use insecure
key exchanges. However, FIRMXRAY relies on vendor-specific
knowledge in two major steps of their analysis: specific

9



signatures that allow the authors to recognize bare-metal
firmware when collecting data, and SDK functions and target
device architecture when rebasing and disassembling firmware
code. Hence, their techniques cannot readily generalize beyond
firmware from Nordic and TI, especially if a firmware sample’s
vendor is not known or does not offer an SDK.

HEAPSTER [28] partially builds on the work of
FIRMXRAY. The authors conduct a large-scale study of non-
Linux-based firmware, though they mostly re-use the dataset
from FIRMXRAY, augmenting it with samples with a known
architecture retrieved from Fitbit. They apply the same tech-
nique as FIRMXRAY to load the firmware, but instead focus
on issues in heap memory management libraries present in the
firmware. They detect allocation and de-allocation functions
by finding the sources of pointers passed to memory functions
(e.g., memcpy), and checking the values returned when those
sources are executed. Once locations of heap memory man-
agement functions are detected, they use HEAPHOPPER [54]
to find vulnerabilities and generate a proof-of-vulnerability
for those functions. In a dataset of 804 images, they found
11 heap management library families with 48 variations, and
all contained at least one critical heap vulnerability. Since
HEAPSTER is based on FIRMXRAY, the same limitations
apply in terms of generalization.

Concurrent to our work, Tan et al. [55] conducted a large-
scale study focusing solely on firmware targeting Arm Cortex-
M systems. The data set comprises 1797 samples and the
authors present similar findings in terms of MPU usage and
presence of svc instructions. However, Tan et al. also assess
additional security properties and note that multiple vendors
leverage svc instructions to implement library calls, rather
than operating systems with privilege separation.

Zhu et al. [50] develop an algorithm that uses the strings
present in a given firmware sample to resolve a base address
for the sample. They do not disassemble the binary, but
rather search the byte stream directly for patterns representing
ASCII characters, and for sequences encoding LDR instruc-
tions (which ARM firmware uses to load a string from a
memory address). Their insight is that strings used in adjacent
code will often be stored in a contiguous block of memory,
and by correlating the addresses passed to LDR instructions
with the offset of these string blocks, they can calculate a
base address. Although this insight may not be true for all
compilers or for hand-crafted assembly code, the authors were
able to find the right base address for 9 out of 10 samples.
The approach, as described by Zhu et al. [50], is specific to
ARM firmware, but could be modified by searching for the
byte encodings of similar instructions on other architectures.

Abbasi et al. [56] provide an quantitative analysis of exploit
mitigation and security critical functions for 42 embedded
operating systems and 78 core families. While their work
focuses on deeply embedded systems (i.e., non-Linux based
systems) and demonstrate the options available to firmware
developers, little is known about the actual usage of the
presented security features in the wild.

Furthermore, even while not their sole focus, some previous
large-scale studies include a significant portion of non-Linux-
based firmware. Costin et al. [7] conduct the first large-
scale analysis of both Linux- and non-Linux-based firmware

images (32,356 in total), employing a variety of techniques to
obtain them (scraping vendor websites, custom search engines,
and collecting user submissions). They try to crack password
hashes contained in the firmware, and use a custom correlation
engine to identify credentials and certificates shared among
different images. Feng et al. [10] build the engine GENIUS
to search firmware for functions, looking for code that is
known to introduce a CVE, in a dataset of 8126 images.
In BINARM [57], the authors build a database of vulnerable
functions, and check if functions in 5756 firmware images
are present in this database and KARONTE [58] analyzes
multi-binary interactions for 899 samples. Finally, the authors
of FIRMSEC [11] match code features of 32,817 firmware
samples against code features in third-party components, and
compare the components they find with a database of CVEs
present in common third-party components. While their data
set includes a considerable amount of non-Linux samples,
the majority of these are not publicly available and the core
analysis of FIRMSEC focuses on Linux-based firmware.

Linux-based firmware has been extensive subject to prior
studies; hence, we only briefly summarize the large-scale static
analyses approaches which are the most related to our work.
FIRMUP [12] finds CVEs in firmware images by computing
similarity between a query and target procedure, in a dataset
of around 2000 executables. CRYPTOREX [59] use static
backwards taint tracking to detect misuse of cryptographic
functions, in a dataset of 1327 firmware images. Lastly, Yu
et al. [60] measure the presence of vulnerability mitigations in
10,685 images, on both user- and kernel-level. These studies
offer interesting approaches to analysis, but are heavily relying
on abstractions provided by the Linux OS, and are hence not
applicable to non-Linux-based firmware.

X. CONCLUSION

We presented FIRMLINE, an analysis pipeline for non-
Linux firmware which aims to incorporate generic techniques
to process unknown firmware. Since there is not much infor-
mation about the ecosystem of non-Linux-based firmware, we
conducted a large-scale analysis of such firmware. While our
approach is not without limitations, we could load and analyze
a more than 3000 samples in this manner. Our analysis indi-
cates that while ARM is a prevalent architecture for firmware,
a non-negligible amount of samples target other architectures.
We further found that only a small fraction of ARM firmware
seems to make use of memory protections or an operating
system. We hope that our work forms the basis for further
research: refinement of the presented techniques, and further
investigation into the OS and security facilities of non-Linux
firmware.

ACKNOWLEDGMENTS

This research was funded in whole or in part by UKRI
EP/V000454/1. The results feed into DsbDtech. For the pur-
pose of open access, the authors have applied a Creative
Commons Attribution (CC BY) licence to the Author Accepted
Manuscript of this work.

10



REFERENCES

[1] L. S. Vailshery, “Number of Internet of Things (IoT)
connected devices worldwide from 2019 to 2023, with
forecasts from 2022 to 2030.”

[2] IoT Analytics, “State of IoT 2023.”
[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard,

E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halder-
man, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever,
Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan,
K. Thomas, and Y. Zhou, “Understanding the Mirai
Botnet,” in USENIX Security Symposium, 2017.

[4] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas,
“DDoS in the IoT: Mirai and Other Botnets,” Computer,
vol. 50, 2017.

[5] C. Lei, Z. Zhang, and C. Hu, “Old Wine in the New Bot-
tle: Mirai Variant Targets Multiple IoT Devices,” https://
unit42.paloaltonetworks.com/mirai-variant-iz1h9/, 2023.

[6] R. Lakshmanan, “Active Mirai Botnet Variant
Exploiting Zyxel Devices for DDoS Attacks,”
https://thehackernews.com/2023/06/active-mirai-botnet-
variant-exploiting.html, 2023.

[7] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti,
“Large-Scale analysis of the security of embedded
firmwares,” in USENIX Security Symposium, 2014.

[8] A. Costin, A. Zarras, and A. Francillon, “Automated
Dynamic Firmware Analysis at Scale: A Case Study on
Embedded Web Interfaces,” in Asia Conference on Com-
puter and Communications Security (AsiaCCS), 2016.

[9] D. Chen, M. Egele, M. Woo, and D. Brumley, “To-
wards Automated Dynamic Analysis for Linux-based
Embedded Firmware,” in Network and Distributed System
Security Symposium (NDSS), 2016.

[10] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and
H. Yin, “Scalable graph-based bug search for firmware
images,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016.

[11] B. Zhao, S. Ji, J. Xu, Y. Tian, Q. Wei, Q. Wang, C. Lyu,
X. Zhang, C. Lin, J. Wu, and R. Beyah, “A Large-Scale
Empirical Analysis of the Vulnerabilities Introduced by
Third-Party Components in IoT Firmware,” in Inter-
national Symposium on Software Testing and Analysis
(ISSTA), 2022.

[12] Y. David, N. Partush, and E. Yahav, “FirmUp: Pre-
cise Static Detection of Common Vulnerabilities in
Firmware,” in International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS), 2018.

[13] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and
Y. Kim, “FirmAE: Towards Large-Scale Emulation of IoT
Firmware for Dynamic Analysis,” in Annual Computer
Security Applications Conference (ACSAC), 2020.

[14] Q. Li, X. Feng, R. Wang, Z. Li, and L. Sun, “To-
wards Fine-grained Fingerprinting of Firmware in Online
Embedded Devices,” in IEEE Conference on Computer
Communications (INFOCOM), 2018.

[15] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and
L. Sun, “FIRM-AFL: High-Throughput Greybox Fuzzing
of IoT Firmware via Augmented Process Emulation,” in
USENIX Security Symposium, 2019.

[16] S. Thomas, F. Garcia, and T. Chothia, “Humidify: A
tool for hidden functionality detection in firmware,” in

Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA ’17), 2017.

[17] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov,
B. Dolan-Gavitt, M. Egele, A. Francillon, L. Lu, N. Gre-
gory, D. Balzarotti, and W. Robertson, “SoK: Enabling
Security Analyses of Embedded Systems via Rehosting,”
in ACM Asia Conference on Computer and Communica-
tions Security (AsiaCCS), 2021.

[18] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and
A. A. Clements, “Challenges in firmware re-hosting, em-
ulation, and analysis,” ACM Computing Surveys (CSUR).

[19] Arm Limited, “A32 Instruction Set Architecture,”
https://developer.arm.com/Architectures/A32%
20Instruction%20Set%20Architecture.

[20] MIPS, “MIPS32 Architecture,” https://www.mips.com/
products/architectures/mips32-2/.

[21] Intel Corporation, Hexadecimal Object File Format
Specification, 1988. [Online]. Available: https://archive.
org/details/IntelHEXStandard/mode/2up

[22] H. Wen, Z. Lin, and Y. Zhang, “FirmXRay: Detecting
Bluetooth Link Layer Vulnerabilities From Bare-Metal
Firmware,” ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2020.

[23] ——, “FirmXRay/dataset/,” https://github.com/
OSUSecLab/FirmXRay/tree/master/dataset, 2021.

[24] L. F. Group, “Repository of firmware blobs for use with
the Linux kernel.” https://git.kernel.org/pub/scm/linux/
kernel/git/firmware/linux-firmware.git/tag/?h=20230210,
2023.

[25] erazor de, “roccat Files - Roccat hardware support
for Linux,” https://sourceforge.net/projects/roccat/files/
firmwares/, 2016.

[26] UCSB-seclab, “monolithic-firmware-collection,” https://
github.com/ucsb-seclab/monolithic-firmware-collection,
2020.

[27] Tadiphone, “Android Dumps,” https://dumps.tadiphone.
dev/dumps/.

[28] F. Gritti, F. Pagani, I. Grishchenko, L. Dresel, N. Redini,
C. Kruegel, and G. Vigna, “HEAPSTER: Analyzing the
Security of Dynamic Allocators for Monolithic Firmware
Images,” in IEEE Symposium on Security & Privacy
(S&P), 2022.

[29] N. Iooss and G. Campana, “Ghost in the Wireless, iwlwifi
edition,” in SSTIC 2022, 2022.

[30] Q. Hou, W. Diao, Y. Wang, X. Liu, S. Liu, L. Ying,
S. Guo, Y. Li, M. Nie, and H. Duan, “Large-Scale Secu-
rity Measurements on the Android Firmware Ecosystem,”
in ACM International Conference on Software Engineer-
ing (ICSE), 2022.

[31] Software Freedom Conservancy, “Selenium WebDriver,”
https://www.selenium.dev/, 2010.

[32] Mozilla, “geckodriver,” https://github.com/mozilla/
geckodriver, 2014.

[33] M. Cecchetti, “SquashFS HOWTO,” https://tldp.org/
HOWTO/SquashFS-HOWTO/whatis.html, 2008.

[34] L. Granboulan, “cpu rec.py, un outil statis-
tique pour la reconnaissance d’architectures bi-
naires exotiques,” in SSTIC, 2017. [Online].
Available: https://github.com/airbus-seclab/cpu rec/blob/
master/doc/cpu rec sstic english.md

[35] radare org, “radare2 source code,” https://github.com/
radareorg/radare2, 2023.

11

https://unit42.paloaltonetworks.com/mirai-variant-iz1h9/
https://unit42.paloaltonetworks.com/mirai-variant-iz1h9/
https://thehackernews.com/2023/06/active-mirai-botnet-variant-exploiting.html
https://thehackernews.com/2023/06/active-mirai-botnet-variant-exploiting.html
https://developer.arm.com/Architectures/A32%20Instruction%20Set%20Architecture
https://developer.arm.com/Architectures/A32%20Instruction%20Set%20Architecture
https://www.mips.com/products/architectures/mips32-2/
https://www.mips.com/products/architectures/mips32-2/
https://archive.org/details/IntelHEXStandard/mode/2up
https://archive.org/details/IntelHEXStandard/mode/2up
https://github.com/OSUSecLab/FirmXRay/tree/master/dataset
https://github.com/OSUSecLab/FirmXRay/tree/master/dataset
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tag/?h=20230210
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tag/?h=20230210
https://sourceforge.net/projects/roccat/files/firmwares/
https://sourceforge.net/projects/roccat/files/firmwares/
https://github.com/ucsb-seclab/monolithic-firmware-collection
https://github.com/ucsb-seclab/monolithic-firmware-collection
https://dumps.tadiphone.dev/dumps/
https://dumps.tadiphone.dev/dumps/
https://www.selenium.dev/
https://github.com/mozilla/geckodriver
https://github.com/mozilla/geckodriver
https://tldp.org/HOWTO/SquashFS-HOWTO/whatis.html
https://tldp.org/HOWTO/SquashFS-HOWTO/whatis.html
https://github.com/airbus-seclab/cpu_rec/blob/master/doc/cpu_rec_sstic_english.md
https://github.com/airbus-seclab/cpu_rec/blob/master/doc/cpu_rec_sstic_english.md
https://github.com/radareorg/radare2
https://github.com/radareorg/radare2


[36] XAMPPRocky, “Tokei,” https://github.com/
XAMPPRocky/tokei, 2015.

[37] Erik Moqvist, “bincopy,” https://github.com/eerimoq/
bincopy, 2015.

[38] Felix Domke, “bingrep,” https://github.com/tmbinc/
bgrep, 2010.

[39] ReFirm Labs, “Binwalk,” https://github.com/
ReFirmLabs/binwalk.git, 2013.

[40] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-
Agnostic Function Detection in Binaries,” in IEEE Euro-
pean Symposium on Security and Privacy (S&P).

[41] National Security Agency, “Ghidra Software
Reverse Engineering Framework,” https://github.
com/NationalSecurityAgency/ghidra, 2019.

[42] J. Fitzpatrick, “An Interview with Steve Furber,”
Commununications of the ACM, 2011. [Online].
Available: https://doi.org/10.1145/1941487.1941501

[43] Arm Ltd., “The Arm ecosystem ships a record 6.7 billion
Arm-based chips in a single quarter,” https://www.arm.
com/company/news/2021/02/arm-ecosystem-ships-
record-6-billion-arm-based-chips-in-a-single-quarter,
2021.

[44] S. Murry, “ARM’s Reach: 50 Billion Chip
Milestone [VIDEO],” https://web.archive.org/web/
20150916101815/https://www.broadcom.com/blog/chip-
design/arms-reach-50-billion-chip-milestone-video/,
2014.

[45] AspenCore, “2019 Embedded Markets Study,”
https://www.embedded.com/wp-content/uploads/2019/
11/EETimes Embedded 2019 Embedded Markets
Study.pdf, 2019.

[46] National Security Agency, “Ghidra source code,” https:
//github.com/NationalSecurityAgency/ghidra, 2023.

[47] Arm Limited, “Arm Armv8-A A32/T32 Instruction Set
Architecture,” https://developer.arm.com/documentation/
ddi0597/2021-06/Base-Instructions/SVC--Supervisor-
Call-?lang=en, 2021.

[48] ——, “Cortex-M3 Devices Generic User Guide,”
https://developer.arm.com/documentation/dui0552/a/
cortex-m3-peripherals/optional-memory-protection-unit.

[49] ——, “Cortex-R4 and Cortex-R4F Technical Reference
Manual r1p3,” https://developer.arm.com/documentation/
ddi0363/e/system-control-coprocessor/system-control-
coprocessor-registers/c0--mpu-type-register?lang=en.

[50] R. Zhu, B. Zhang, J. Mao, Q. Zhang, and Y. an Tan,
“A methodology for determining the image base of arm-
based industrial control system firmware,” International
Journal of Critical Infrastructure Protection, 2017.

[51] C. Pang, R. Yu, D. Xu, E. Koskinen, G. Portokalidis,
and J. Xu, “Towards optimal use of exception han-
dling information for function detection,” in IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), 2021.

[52] S. Yu, Y. Qu, X. Hu, and H. Yin, “DeepDi: Learn-
ing a Relational Graph Convolutional Network Model
on Instructions for Fast and Accurate Disassembly,” in
USENIX Security Symposium, 2022.

[53] S. Kim, H. Kim, and S. K. Cha, “Funprobe: Probing
functions from binary code through probabilistic anal-
ysis,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2023.

[54] M. Eckert, A. Bianchi, R. Wang, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, “HeapHopper: Bringing
bounded model checking to heap implementation secu-
rity,” in USENIX Security Symposium, 2018.

[55] X. Tan, Z. Ma, S. Pinto, L. Guan, N. Zhang, J. Xu, Z. Lin,
H. Hu, and Z. Zhao, “Where’s the ”up”?! A Comprehen-
sive (bottom-up) Study on the Security of Arm Cortex-M
Systems,” arXiv preprint arXiv:2401.15289, 2024.

[56] A. Abbasi, J. Wetzels, T. Holz, and S. Etalle, “Challenges
in designing exploit mitigations for deeply embedded
systems,” in IEEE European Symposium on Security and
Privacy (EuroS&P), 2019.

[57] P. Shirani, L. Collard, B. L. Agba, B. Lebel, M. Debbabi,
L. Wang, and A. Hanna, “BINARM: Scalable and Effi-
cient Detection of Vulnerabilities in Firmware Images of
Intelligent Electronic Devices,” in Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA),
2018.

[58] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Con-
tinella, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Karonte: Detecting Insecure Multi-binary Interactions in
Embedded Firmware,” in IEEE Symposium on Security
and Privacy (SP), 2020.

[59] L. Zhang, J. Chen, W. Diao, S. Guo, J. Weng, and
K. Zhang, “CryptoREX: large-scale analysis of crypto-
graphic misuse in IoT Devices,” in International Sym-
posium on Research in Attacks, Intrusions and Defenses
(RAID), 2019.

[60] R. Yu, F. Del Nin, Y. Zhang, S. Huang, P. Kaliyar,
S. Zakto, M. Conti, G. Portokalidis, and J. Xu, “Building
Embedded Systems Like It’s 1996,” in Network and
Distributed System Security Symposium (NDSS), 2022.

12

https://github.com/XAMPPRocky/tokei
https://github.com/XAMPPRocky/tokei
https://github.com/eerimoq/bincopy
https://github.com/eerimoq/bincopy
https://github.com/tmbinc/bgrep
https://github.com/tmbinc/bgrep
https://github.com/ReFirmLabs/binwalk.git
https://github.com/ReFirmLabs/binwalk.git
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://doi.org/10.1145/1941487.1941501
https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter
https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter
https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter
https://web.archive.org/web/20150916101815/https://www.broadcom.com/blog/chip-design/arms-reach-50-billion-chip-milestone-video/
https://web.archive.org/web/20150916101815/https://www.broadcom.com/blog/chip-design/arms-reach-50-billion-chip-milestone-video/
https://web.archive.org/web/20150916101815/https://www.broadcom.com/blog/chip-design/arms-reach-50-billion-chip-milestone-video/
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://developer.arm.com/documentation/ddi0597/2021-06/Base-Instructions/SVC--Supervisor-Call-?lang=en
https://developer.arm.com/documentation/ddi0597/2021-06/Base-Instructions/SVC--Supervisor-Call-?lang=en
https://developer.arm.com/documentation/ddi0597/2021-06/Base-Instructions/SVC--Supervisor-Call-?lang=en
https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit
https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit
https://developer.arm.com/documentation/ddi0363/e/system-control-coprocessor/system-control-coprocessor-registers/c0--mpu-type-register?lang=en
https://developer.arm.com/documentation/ddi0363/e/system-control-coprocessor/system-control-coprocessor-registers/c0--mpu-type-register?lang=en
https://developer.arm.com/documentation/ddi0363/e/system-control-coprocessor/system-control-coprocessor-registers/c0--mpu-type-register?lang=en


APPENDIX

SHA-256 sum of file Base address MPU detected (manual) MPU detected (pipeline)

f7752f6967487e7355e0aa1b015baaeeffaaa4794343e991f620fd3757f48879 114708 × ×

f3dea3328d8f5278bf5940132129a7effd59ddf01f623a45952b19df473af5fb 156452 × ×

508be2bf7bf48fd7c5191987374e91830dfb96febab4a9117204076cb8bb7c63 892546362 × ×

c7a3869642aec5d42d0b00543e07da588b8629e29314096f04e4699f760321af 78848 × ×

5a20c608351a6be29fa8c219510fbc00e1e44fb21bb0d11b47a3d7352b4bfc42 69756 × ×

e59f97b66f16ca46153c074a3f758d27b9bba333f880daf33d151c6c9828a132 98304 × ×

e530827b88d5ed6940d78dd1a84df7d0c15817bdfba79a92f67dd9cb243e254f 536872960 × ×

98fe82bbf94da0f0be4682cc07ba67e4a82236381ab62baf589b11a1f3605b34 180428 × ×

c9ffcc74c0d1586eadc4171a83e74740fa23fa744af2b5e034a8915011dd704c 120832 × ×

e115d302d3beac9c873c90d5f4eb6bfb65219e8ed8eae92d4bd2e9b51888eda8 167944 × ×

426a4c5e063a69be8e9cef0e895c9794e9645a6afd273a9887324a2e076bf425 672 ✓ ✓

c693bb3480a50d33d531f98dea92c33f81857a8471a3521e2e73181a7e50271b 36864 ✓ ✓

695f5f100e5065d15d71d0e9976dfe0f0644b6d0028fbced6f0f85b1f428cbe4 15360 ✓ ✓

cb4c5ba2ba08ab81ea03fa7851e3add1fbd8fd339378e3cbaa017ffcb746097c 15360 ✓ ✓

de90dca81bd8747de2cc35b4368b8951ddbdb1d3526a9963d6be49ea0d98bac7 83648 ✓ ✓

7674515f27ae059380cfc241467bd39050b580d2a4d16a4560ac41b8769d26f4 36864 ✓ ✓

dec4e83030976c267c79f4a6aaa25aef4a6374468b6788cd148b9e8ce1da7a63 13900 ✓ ✓

f3ae1502f1ab2e992d2b9161b92db61ca5dc38adcfdd9564248d34a2b58fdf10 36864 ✓ ✓

637158f8ef750ae7eab15a3de2ea27db3d10bf470d23bb0bd55b1897fe35cab2 15360 ✓ ✓

879256c0877b005743fff009ef4617657c6d9e518eb184a7c5b2ca5a20d3a5da 15360 ✓ ✓

d79b8fa0d9be90808e9e586c32894cb35c5b64ddf44055e51a48bc668ef8151a 90572 ✓ ✓

3195b393c89bd8a1f002b555d0c58067bd2e6c686ec2bb80954470531260d91a 15360 ✓ ✓

51758f2eb8cd0d38062ca6fe87f5e292ac16ae1bface1865e3a1d8916e905e4c 15360 ✓ ✓

cfc3c059b5a44e2671f01c4e185af7eac5b861bbec912f057e18ac2a37530d99 87312 ✓ ✓

4204cb40cb4456e379d0dcdfb46da69a15ab5f51c589f20089c64c7dda76fbc2 103952 × ×

7aed614ef1d02ac7e288ff968195f31d02323b2c695dab8ee0caf0bf53db12ac 1924 × ×

ad6fff54c1a68039ad238fc62efdcfc68efb78c87461a4aad7e247eb7baa3500 3328 × ×

fdea74bfa6195c90e831704e43fe12473c9395e69a9d7f44d5e91e744a7aae28 536881152 × ×

302c325488d204297d699b7bb179ee0d42f5fc82c7f1a68b6ef010612fe3b56a 139264 × ×

97036720fe2ee8940f561b2c12de323b2ed4b1c779caee2f605c65a5a1f30b82 134245376 ✓ ✓

Table V: Comparison of MPU detection results for the pipeline with a manual analysis (30 random samples).

13



SHA-256 sum of file Base address OS detected (manual) OS detected (pipeline)

a4b6857b4b4050cdacc101bfa2fa86b1142a257d95a6b0a206c044e8c637f8c3 122880 ✓ ✓

a2254573688b531a0d477cc2d7a2e01bbe2fd0a9cd8c4c760999f594d3aa6172 197632 ✓ ✓

95b95f857a5e70167ccf28e84dc78e816b221b91bcf5e9f2150d5969cca5e695 314628 × ×

d4a71f6035be48344abff8c2da813a3d4b6f82c880bb4b63b58f1b38a8ca3e37 0 ✓ ✓

f05a049d14a0a429ed40df6134ef7badc41da9cf579902c1d1debfbafab6340b 0 × ×

0c95c5616861856b055209a05270c0cc75cb500daa550a659b275e124ea334aa 290 × ×

d711fb2b08057fede77800a1ef733ce94baf89759caa1361bb441e6682e42f1d 138240 ✓ ✓

a16e54b2548e7883749d851cfbf8d8a245373ffab064c6ee9382f0387724318d 77824 × ×

337d1730aab2ab7afba5f349dccb5250e36994bdd298dafd887b1e3f5282c457 757030174 × ×

6436f7f4d16cb2f8ccc1a0cb2015928944f37648831ee7963291dcc714e376bf 429572 Maybe (“Tsk Ssvc”, “Elf Ssvc”) ×

94bf44c56fdd4345ed22d99f13510d4ddf7276fadf12fd717622d6110f3cbb68 536662008 ✓ ✓

5d3e29babfa44b1ca56ca98abb32361b6781dbce7a0daaea05ab249d5639ad0e 133636 ✓ ✓

dff70fbf0cf7e00ad6d8c31c823b59264166dad301647846abaf32c8030144bf 114824 ✓ ✓

c6fc9b645d416eafbd4d1e91089dc269a8031a91cbbd16b67b34384c67a89418 114824 ✓ ✓

29be79731ebf2eb193f0159ae887e8af049e4ccd9a2e3298358a1ef982c3ccd2 0 × ×

7a2dca4888fbe66722cfa1d0c584c1f9d3d1d751097260207ff04ea18d3ac1fc 132098 ✓ ✓

98fe82bbf94da0f0be4682cc07ba67e4a82236381ab62baf589b11a1f3605b34 180428 ✓ ✓

2d4a18a23221919f27ba8d32ed3c01aba78eeaf93b743fe5184660bf11fbfab7 0 × ×

de90dca81bd8747de2cc35b4368b8951ddbdb1d3526a9963d6be49ea0d98bac7 83648 Maybe (“Unknown SVC 0x%02lX called at 0x%08lX”) ×

aed0923f52518890e9f4a64bb1cfeea0dde1238e33be3500dad13e6cc469f892 15360 Maybe (“Unknown SVC 0x%02lX called at 0x%08lX”) ×

2617f34ee6a43a11107a4627bbeb69cae8fd4a66fce11b79acaaeb961ca210c6 0 × ×

340f3f39173a0d2239a99645345e60abbeb45791a4279d625878c696f72c7d43 88564 × ×

b1c6f20bfd5ab8b3d775ee62d10f9dfb8febc758e7cbef3bd1f0ecd54bac8809 29696 × ×

ac40481cd4317bf5a4f0352a37a4d3237fe9782e156c9a05d2984e69ac15bf4c 5423186 × ×

5b1a3037dd73d2c77ef7c4c9fda938ed4e48e3f6a4e99186ab7858503a918b05 536803326 ✓ ✓

6304c428233d18399a9e05d24dbcebe48948a69df39cc714a23d86f31cb1a16b 0 ✓ ✓

5fae530df7f25b843c3c4a3f456a4a4932849f0f38f1dc16c730ae7d1d120d5e 1924 ✓ ✓

867a5c0a23a11fc25d7623fe1e8c6dad0e9a43ca7839695bb7923665778335b3 1216 ✓ ✓

a60be4e9fa8e2917f4742fe85fd48627a4424a1c471aaa698d48744dbd58ff5d 0 ✓ ✓

361e4f2ac4b7149fd0259931c252b6c40a1605c570d666598348f769aa85b7a2 5453906 × ×

Table VI: Comparison of OS detection results for the pipeline with a manual analysis (30 random samples).

14


	I Introduction
	II Background
	II-A Firmware architecture and formats
	II-B Binary Program Analysis

	III Data Collection
	IV Design
	IV-A Overview
	IV-B Preprocessing (1)
	IV-C Preliminary Analysis (2) and Linux Detection (3)
	IV-D Architecture Detection (4)
	IV-E Base address detection and disassembly (5)
	IV-F Code Analysis (6)
	IV-G Data Storage (7)

	V Implementation
	VI Evaluation
	VI-A Accuracy of Base Address Detection
	VI-B Landscape of Non-Linux-Based Firmware
	VI-C Security Assessment of Non-Linux-Based Firmware
	VI-D Pipeline Performance

	VII Discussion
	VIII Limitations & Future Work
	IX Related Work
	X Conclusion
	Appendix

